Properties

Label 4608.ti.2._.C
Order $ 2^{8} \cdot 3^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_2^2\times C_6).\GL(2,\mathbb{Z}/4)$
Order: \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
Index: \(2\)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(1,3,2)(4,7,6)(8,9,15,10)(11,14)(12,13), (4,7)(5,6), (11,13)(12,14), (2,3) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), maximal, nonabelian, and monomial (hence solvable). Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $(C_6\times \GL(2,\mathbb{Z}/4)).D_4$
Order: \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_6\times A_4).C_2^6.C_2^3$
$\operatorname{Aut}(H)$ $C_6^2:C_3.C_2^4.C_2^5$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed