Properties

Label 4608.pc.48.PH
Order $ 2^{5} \cdot 3 $
Index $ 2^{4} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4\times S_4$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(4,7)(5,6), (1,2)(5,7), (1,3,2)(4,5,6), (4,5)(6,7)(8,14)(9,11)(10,12)(13,15), (4,5)(6,7)(8,15,14,13)(9,10,11,12), (4,6)(5,7)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2^5.D_6^2$
Order: \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_3^3.C_2^6$
$\operatorname{Aut}(H)$ $C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{W}$\(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$D_4:C_2$
Normalizer:$\GL(2,\mathbb{Z}/4):C_2^3$
Normal closure:$C_2\times C_{12}:S_4$
Core:$C_2^3$
Minimal over-subgroups:$C_{12}:S_4$$D_4\times S_4$$C_2^4.D_6$$C_2^4.D_6$$D_4\times S_4$$Q_8\times S_4$
Maximal under-subgroups:$C_2\times S_4$$C_4\times A_4$$A_4:C_4$$C_4\times D_4$$C_4\times S_3$

Other information

Number of subgroups in this autjugacy class$36$
Number of conjugacy classes in this autjugacy class$6$
Möbius function not computed
Projective image not computed