Properties

Label 4608.pc.24.DL
Order $ 2^{6} \cdot 3 $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4\times S_4$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(4,7)(5,6), (4,5)(6,7)(8,14)(9,11), (1,2)(5,7), (4,5)(6,7)(8,13)(9,12)(10,11)(14,15), (1,3,2)(4,5,6), (10,12)(13,15), (4,6)(5,7)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and rational.

Ambient group ($G$) information

Description: $C_2^5.D_6^2$
Order: \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_3^3.C_2^6$
$\operatorname{Aut}(H)$ $\GL(2,\mathbb{Z}/4):C_2^2$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\card{W}$\(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$D_4$
Normalizer:$\GL(2,\mathbb{Z}/4):C_2^3$
Normal closure:$C_6:S_4\times D_4$
Core:$C_2^4$
Minimal over-subgroups:$D_4\times C_3:S_4$$\GL(2,\mathbb{Z}/4):C_2^2$$\GL(2,\mathbb{Z}/4):C_2^2$$\GL(2,\mathbb{Z}/4):C_2^2$
Maximal under-subgroups:$D_4\times A_4$$C_2^2\times S_4$$\GL(2,\mathbb{Z}/4)$$C_2^2\times S_4$$\GL(2,\mathbb{Z}/4)$$C_4\times S_4$$C_4:S_4$$D_4^2$$S_3\times D_4$

Other information

Number of subgroups in this autjugacy class$72$
Number of conjugacy classes in this autjugacy class$12$
Möbius function not computed
Projective image not computed