Properties

Label 4608.pc.4.E
Order $ 2^{7} \cdot 3^{2} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_2^3\times C_{12}):C_{12}$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,2)(8,12,11,13)(9,15,14,10), (4,7,5)(8,9)(10,13)(11,14)(12,15), (4,6) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, monomial (hence solvable), and metabelian.

Ambient group ($G$) information

Description: $C_2^5.D_6^2$
Order: \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_3^3.C_2^6$
$\operatorname{Aut}(H)$ $C_2^6.D_6^2$, of order \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \)
$\card{W}$\(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2^5.D_6^2$
Complements:$C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$
Minimal over-subgroups:$C_2^3.(D_6\times S_4)$$(C_2\times C_6\times A_4).D_4.C_2$$C_2^5.(C_6\times D_6)$
Maximal under-subgroups:$C_2^4:C_6^2$$A_4\times C_6.D_4$$C_2^5.D_6$$C_2^5:C_{12}$$C_6^2.D_4$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$3$
Möbius function not computed
Projective image not computed