Properties

Label 4608.pc.2.C
Order $ 2^{8} \cdot 3^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3.(D_6\times S_4)$
Order: \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
Index: \(2\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(5,7)(8,12,11,13)(9,15,14,10), (4,7,5)(8,9)(10,13)(11,14)(12,15), (1,2) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, maximal, a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2^5.D_6^2$
Order: \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_3^3.C_2^6$
$\operatorname{Aut}(H)$ $(C_2^2\times C_6\times A_4).C_2^6$
$\card{W}$\(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2^5.D_6^2$
Complements:$C_2$ $C_2$ $C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$C_2^5.D_6^2$
Maximal under-subgroups:$C_6:S_4\times D_4$$(C_2^3\times C_{12}):C_{12}$$C_3\times C_2^2.\GL(2,\mathbb{Z}/4)$$C_2^5.S_3^2$$C_2^5.S_3^2$$C_2^5:(C_4\times S_3)$$C_2^3:C_4\times S_4$$(C_6\times D_4).D_6$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$3$
Möbius function not computed
Projective image not computed