Properties

Label 4608.dl.36.BQ
Order $ 2^{7} $
Index $ 2^{2} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4:D_4$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(1,4)(2,8)(3,6)(5,7)(9,11)(10,12), (1,2,8,4)(3,7,5,6)(9,11), (2,3)(4,5)(9,11)(10,12), (1,8)(6,7), (2,5)(3,4), (2,4)(3,5), (1,7)(6,8)\rangle$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $C_2^6:\SOPlus(4,2)$
Order: \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$A_4^2.C_2^5.C_2^2$
$\operatorname{Aut}(H)$ $C_2^5.(D_4\times S_4)$, of order \(6144\)\(\medspace = 2^{11} \cdot 3 \)
$\operatorname{res}(S)$$C_2^5:D_4$, of order \(256\)\(\medspace = 2^{8} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2^2\wr C_2$, of order \(32\)\(\medspace = 2^{5} \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2^5:D_4$
Normal closure:$C_2^4:D_6^2$
Core:$C_2^5$
Minimal over-subgroups:$C_2^4:S_4$$C_2^5:D_4$
Maximal under-subgroups:$C_2^4:C_4$$D_4:C_2^3$$C_2^4:C_4$$C_2^3:D_4$$C_2^3:D_4$$C_2\wr C_2^2$$C_2\wr C_2^2$

Other information

Number of subgroups in this autjugacy class$18$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$S_4^2:C_2^2$