Subgroup ($H$) information
| Description: | $C_2^5:D_4$ |
| Order: | \(256\)\(\medspace = 2^{8} \) |
| Index: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Generators: |
$\langle(1,4)(2,8)(3,6)(5,7)(9,11)(10,12), (1,7,8,6)(2,4), (1,2,8,4)(3,7,5,6)(9,11), (2,3)(4,5)(9,11)(10,12), (1,8)(6,7), (2,5)(3,4), (2,4)(3,5), (1,7)(6,8)\rangle$
|
| Nilpotency class: | $3$ |
| Derived length: | $2$ |
The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.
Ambient group ($G$) information
| Description: | $C_2^6:\SOPlus(4,2)$ |
| Order: | \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Derived length: | $4$ |
The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $A_4^2.C_2^5.C_2^2$ |
| $\operatorname{Aut}(H)$ | $C_2^{10}.S_4^2$, of order \(589824\)\(\medspace = 2^{16} \cdot 3^{2} \) |
| $\operatorname{res}(S)$ | $C_2^3:D_4^2$, of order \(512\)\(\medspace = 2^{9} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
| $W$ | $C_2\wr C_2^2$, of order \(64\)\(\medspace = 2^{6} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $9$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | $S_4^2:C_2^2$ |