Properties

Label 4608.co.6.E
Order $ 2^{8} \cdot 3 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^7:C_6$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,7)(2,4), (1,3,4,6)(2,8,7,5)(9,15,10,16)(11,14,13,12), (3,5)(6,8), (2,4,7) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), and metabelian.

Ambient group ($G$) information

Description: $C_2^2\wr S_3:C_{12}$
Order: \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$A_4^2.C_2^6.C_2$
$\operatorname{Aut}(H)$ $C_2^4:C_3.C_2^4.C_2^4$
$\operatorname{res}(S)$$D_4\times C_2^4:S_4$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_4\times C_2^3:A_4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^5:(C_4\times A_4)$
Normal closure:$C_2\times A_4^2:D_4$
Core:$C_2^5:A_4$
Minimal over-subgroups:$C_2\times A_4^2:D_4$$C_2^5:(C_4\times A_4)$
Maximal under-subgroups:$C_2^5:A_4$$C_2\wr C_6$$C_2^5:A_4$$C_2^5:C_{12}$$C_2\wr C_6$$C_2^5:D_4$$C_2^5:C_6$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed