Properties

Label 4608.co.2.A
Order $ 2^{8} \cdot 3^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times A_4^2:D_4$
Order: \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
Index: \(2\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,7)(2,4), (1,3,4,6)(2,8,7,5)(9,15,10,16)(11,14,13,12), (5,6,8)(12,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), maximal, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2^2\wr S_3:C_{12}$
Order: \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$A_4^2.C_2^6.C_2$
$\operatorname{Aut}(H)$ $A_4^2.C_2^4.C_2^3$
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^6.D_6^2$, of order \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$A_4\wr C_2\times C_4$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^2\wr S_3:C_{12}$
Minimal over-subgroups:$C_2^2\wr S_3:C_{12}$
Maximal under-subgroups:$C_2^3\times A_4^2$$A_4^2:C_2^3$$C_2\times A_4^2:C_4$$A_4^2:D_4$$A_4^2:D_4$$C_2^3:\GL(2,\mathbb{Z}/4)$$C_2^7:C_6$$C_6^2:C_2^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed