Properties

Label 451584.a.2._.C
Order $ 2^{9} \cdot 3^{2} \cdot 7^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2.\SL(2,7).\SO(3,7)$
Order: \(225792\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 7^{2} \)
Index: \(2\)
Exponent: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Generators: $\left(\begin{array}{rrrr} 6 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 6 \end{array}\right), \left(\begin{array}{rrrr} 2 & 3 & 6 & 0 \\ 6 & 5 & 6 & 6 \\ 2 & 0 & 2 & 4 \\ 5 & 2 & 1 & 5 \end{array}\right), \left(\begin{array}{rrrr} 5 & 5 & 1 & 4 \\ 3 & 0 & 0 & 1 \\ 0 & 0 & 5 & 2 \\ 0 & 0 & 4 & 0 \end{array}\right), \left(\begin{array}{rrrr} 1 & 5 & 4 & 0 \\ 4 & 6 & 0 & 3 \\ 2 & 0 & 6 & 5 \\ 0 & 5 & 4 & 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $1$

The subgroup is characteristic (hence normal), maximal, nonabelian, and nonsolvable. Whether it is a direct factor, a semidirect factor, or almost simple has not been computed.

Ambient group ($G$) information

Description: $\SL(2,7)^2.C_2^2$
Order: \(451584\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 7^{2} \)
Exponent: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable. Whether it is almost simple has not been computed.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2.\PSL(2,7)^2.D_4$
$\operatorname{Aut}(H)$ $C_2^2.\PSL(2,7)^2.D_4$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed