Properties

Label 451584.a
Order \( 2^{10} \cdot 3^{2} \cdot 7^{2} \)
Exponent \( 2^{4} \cdot 3 \cdot 7 \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \)
$\card{Z(G)}$ 2
$\card{\Aut(G)}$ \( 2^{11} \cdot 3^{2} \cdot 7^{2} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. $32$
Trans deg. $32$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 32 | (1,2,7,6,9,26)(3,13,25,16,14,27)(4,10,19,11,20,32)(8,24,21,29,15,28)(12,23)(18,30), (1,3)(2,8)(4,15)(5,18)(6,21)(7,22)(9,13)(10,25)(11,14)(12,24)(16,23)(17,30)(19,31)(20,28)(26,29)(27,32), (1,2,9)(3,14,25)(4,10,20)(5,11,19)(6,7,17)(8,15,21)(13,27,16)(24,28,29), (1,4)(2,10)(3,15)(5,17)(6,11)(7,19)(8,25)(9,20)(12,23)(13,28)(14,21)(16,24)(18,30)(22,31)(26,32)(27,29), (1,2,11,9,5,19,12)(3,16,25,21,30,13,29,15,24,8,14,18,28,27)(4,10,6,20,17,7,23)(22,31), (1,5,19)(2,12,11)(3,15)(4,17,7)(6,10,23)(8,25)(13,28)(14,21)(16,24)(18,30)(22,31)(27,29), (1,6,7)(4,11,19)(5,20,32)(9,26,17) >;
 
Copy content gap:G := Group( (1,2,7,6,9,26)(3,13,25,16,14,27)(4,10,19,11,20,32)(8,24,21,29,15,28)(12,23)(18,30), (1,3)(2,8)(4,15)(5,18)(6,21)(7,22)(9,13)(10,25)(11,14)(12,24)(16,23)(17,30)(19,31)(20,28)(26,29)(27,32), (1,2,9)(3,14,25)(4,10,20)(5,11,19)(6,7,17)(8,15,21)(13,27,16)(24,28,29), (1,4)(2,10)(3,15)(5,17)(6,11)(7,19)(8,25)(9,20)(12,23)(13,28)(14,21)(16,24)(18,30)(22,31)(26,32)(27,29), (1,2,11,9,5,19,12)(3,16,25,21,30,13,29,15,24,8,14,18,28,27)(4,10,6,20,17,7,23)(22,31), (1,5,19)(2,12,11)(3,15)(4,17,7)(6,10,23)(8,25)(13,28)(14,21)(16,24)(18,30)(22,31)(27,29), (1,6,7)(4,11,19)(5,20,32)(9,26,17) );
 
Copy content sage:G = PermutationGroup(['(1,2,7,6,9,26)(3,13,25,16,14,27)(4,10,19,11,20,32)(8,24,21,29,15,28)(12,23)(18,30)', '(1,3)(2,8)(4,15)(5,18)(6,21)(7,22)(9,13)(10,25)(11,14)(12,24)(16,23)(17,30)(19,31)(20,28)(26,29)(27,32)', '(1,2,9)(3,14,25)(4,10,20)(5,11,19)(6,7,17)(8,15,21)(13,27,16)(24,28,29)', '(1,4)(2,10)(3,15)(5,17)(6,11)(7,19)(8,25)(9,20)(12,23)(13,28)(14,21)(16,24)(18,30)(22,31)(26,32)(27,29)', '(1,2,11,9,5,19,12)(3,16,25,21,30,13,29,15,24,8,14,18,28,27)(4,10,6,20,17,7,23)(22,31)', '(1,5,19)(2,12,11)(3,15)(4,17,7)(6,10,23)(8,25)(13,28)(14,21)(16,24)(18,30)(22,31)(27,29)', '(1,6,7)(4,11,19)(5,20,32)(9,26,17)'])
 

Group information

Description:$\SL(2,7)^2.C_2^2$
Order: \(451584\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 7^{2} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^2.\PSL(2,7)^2.D_4$, of order \(903168\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 7^{2} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 4, $\PSL(2,7)$ x 2
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$1$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and nonsolvable. Whether it is almost simple has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 7 8 12 14 16 21 24 28 42 48 56
Elements 1 3811 3248 2604 72464 2400 42672 47040 39456 103488 5376 18816 40320 16128 37632 16128 451584
Conjugacy classes   1 5 2 5 12 3 11 4 9 18 1 4 4 3 8 4 94
Divisions 1 5 2 5 10 3 7 4 9 6 1 2 4 3 1 2 65
Autjugacy classes 1 4 2 4 9 2 10 3 6 10 1 4 3 3 4 4 70

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 12 14 16 18 24 32 36 48 49 64 72 84 96 112 128 144 168 192 224 256 288 336 384
Irr. complex chars.   4 7 2 5 4 0 4 12 2 4 8 9 7 17 5 4 0 0 0 0 0 0 0 0 94
Irr. rational chars. 4 1 2 3 4 1 5 4 3 4 8 5 1 3 3 2 2 1 3 1 1 1 1 2 65

Minimal presentations

Permutation degree:$32$
Transitive degree:$32$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 16 16
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Permutation group:Degree $32$ $\langle(1,2,7,6,9,26)(3,13,25,16,14,27)(4,10,19,11,20,32)(8,24,21,29,15,28)(12,23) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 32 | (1,2,7,6,9,26)(3,13,25,16,14,27)(4,10,19,11,20,32)(8,24,21,29,15,28)(12,23)(18,30), (1,3)(2,8)(4,15)(5,18)(6,21)(7,22)(9,13)(10,25)(11,14)(12,24)(16,23)(17,30)(19,31)(20,28)(26,29)(27,32), (1,2,9)(3,14,25)(4,10,20)(5,11,19)(6,7,17)(8,15,21)(13,27,16)(24,28,29), (1,4)(2,10)(3,15)(5,17)(6,11)(7,19)(8,25)(9,20)(12,23)(13,28)(14,21)(16,24)(18,30)(22,31)(26,32)(27,29), (1,2,11,9,5,19,12)(3,16,25,21,30,13,29,15,24,8,14,18,28,27)(4,10,6,20,17,7,23)(22,31), (1,5,19)(2,12,11)(3,15)(4,17,7)(6,10,23)(8,25)(13,28)(14,21)(16,24)(18,30)(22,31)(27,29), (1,6,7)(4,11,19)(5,20,32)(9,26,17) >;
 
Copy content gap:G := Group( (1,2,7,6,9,26)(3,13,25,16,14,27)(4,10,19,11,20,32)(8,24,21,29,15,28)(12,23)(18,30), (1,3)(2,8)(4,15)(5,18)(6,21)(7,22)(9,13)(10,25)(11,14)(12,24)(16,23)(17,30)(19,31)(20,28)(26,29)(27,32), (1,2,9)(3,14,25)(4,10,20)(5,11,19)(6,7,17)(8,15,21)(13,27,16)(24,28,29), (1,4)(2,10)(3,15)(5,17)(6,11)(7,19)(8,25)(9,20)(12,23)(13,28)(14,21)(16,24)(18,30)(22,31)(26,32)(27,29), (1,2,11,9,5,19,12)(3,16,25,21,30,13,29,15,24,8,14,18,28,27)(4,10,6,20,17,7,23)(22,31), (1,5,19)(2,12,11)(3,15)(4,17,7)(6,10,23)(8,25)(13,28)(14,21)(16,24)(18,30)(22,31)(27,29), (1,6,7)(4,11,19)(5,20,32)(9,26,17) );
 
Copy content sage:G = PermutationGroup(['(1,2,7,6,9,26)(3,13,25,16,14,27)(4,10,19,11,20,32)(8,24,21,29,15,28)(12,23)(18,30)', '(1,3)(2,8)(4,15)(5,18)(6,21)(7,22)(9,13)(10,25)(11,14)(12,24)(16,23)(17,30)(19,31)(20,28)(26,29)(27,32)', '(1,2,9)(3,14,25)(4,10,20)(5,11,19)(6,7,17)(8,15,21)(13,27,16)(24,28,29)', '(1,4)(2,10)(3,15)(5,17)(6,11)(7,19)(8,25)(9,20)(12,23)(13,28)(14,21)(16,24)(18,30)(22,31)(26,32)(27,29)', '(1,2,11,9,5,19,12)(3,16,25,21,30,13,29,15,24,8,14,18,28,27)(4,10,6,20,17,7,23)(22,31)', '(1,5,19)(2,12,11)(3,15)(4,17,7)(6,10,23)(8,25)(13,28)(14,21)(16,24)(18,30)(22,31)(27,29)', '(1,6,7)(4,11,19)(5,20,32)(9,26,17)'])
 
Matrix group:$\left\langle \left(\begin{array}{rrrr} 5 & 0 & 0 & 0 \\ 5 & 6 & 3 & 0 \\ 6 & 4 & 3 & 0 \\ 2 & 6 & 2 & 4 \end{array}\right), \left(\begin{array}{rrrr} 0 & 2 & 0 & 5 \\ 1 & 1 & 6 & 1 \\ 6 & 4 & 1 & 2 \\ 6 & 3 & 5 & 5 \end{array}\right), \left(\begin{array}{rrrr} 2 & 0 & 0 & 0 \\ 4 & 4 & 0 & 0 \\ 2 & 1 & 2 & 0 \\ 3 & 2 & 3 & 4 \end{array}\right), \left(\begin{array}{rrrr} 1 & 5 & 2 & 0 \\ 1 & 6 & 0 & 5 \\ 1 & 0 & 6 & 5 \\ 0 & 6 & 1 & 1 \end{array}\right), \left(\begin{array}{rrrr} 6 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 6 \end{array}\right), \left(\begin{array}{rrrr} 3 & 4 & 2 & 3 \\ 3 & 6 & 4 & 4 \\ 3 & 5 & 0 & 4 \\ 4 & 4 & 2 & 2 \end{array}\right), \left(\begin{array}{rrrr} 1 & 3 & 1 & 0 \\ 5 & 1 & 2 & 2 \\ 6 & 2 & 5 & 1 \\ 0 & 3 & 1 & 1 \end{array}\right) \right\rangle \subseteq \GL_{4}(\F_{7})$
Copy content comment:Define the group as a matrix group with coefficients in GLFp
 
Copy content magma:G := MatrixGroup< 4, GF(7) | [[5, 0, 0, 0, 5, 6, 3, 0, 6, 4, 3, 0, 2, 6, 2, 4], [0, 2, 0, 5, 1, 1, 6, 1, 6, 4, 1, 2, 6, 3, 5, 5], [2, 0, 0, 0, 4, 4, 0, 0, 2, 1, 2, 0, 3, 2, 3, 4], [1, 5, 2, 0, 1, 6, 0, 5, 1, 0, 6, 5, 0, 6, 1, 1], [6, 0, 0, 0, 0, 6, 0, 0, 0, 0, 6, 0, 0, 0, 0, 6], [3, 4, 2, 3, 3, 6, 4, 4, 3, 5, 0, 4, 4, 4, 2, 2], [1, 3, 1, 0, 5, 1, 2, 2, 6, 2, 5, 1, 0, 3, 1, 1]] >;
 
Copy content gap:G := Group([[[ Z(7)^5, 0*Z(7), 0*Z(7), 0*Z(7) ], [ Z(7)^5, Z(7)^3, Z(7), 0*Z(7) ], [ Z(7)^3, Z(7)^4, Z(7), 0*Z(7) ], [ Z(7)^2, Z(7)^3, Z(7)^2, Z(7)^4 ]], [[ 0*Z(7), Z(7)^2, 0*Z(7), Z(7)^5 ], [ Z(7)^0, Z(7)^0, Z(7)^3, Z(7)^0 ], [ Z(7)^3, Z(7)^4, Z(7)^0, Z(7)^2 ], [ Z(7)^3, Z(7), Z(7)^5, Z(7)^5 ]], [[ Z(7)^2, 0*Z(7), 0*Z(7), 0*Z(7) ], [ Z(7)^4, Z(7)^4, 0*Z(7), 0*Z(7) ], [ Z(7)^2, Z(7)^0, Z(7)^2, 0*Z(7) ], [ Z(7), Z(7)^2, Z(7), Z(7)^4 ]], [[ Z(7)^0, Z(7)^5, Z(7)^2, 0*Z(7) ], [ Z(7)^0, Z(7)^3, 0*Z(7), Z(7)^5 ], [ Z(7)^0, 0*Z(7), Z(7)^3, Z(7)^5 ], [ 0*Z(7), Z(7)^3, Z(7)^0, Z(7)^0 ]], [[ Z(7)^3, 0*Z(7), 0*Z(7), 0*Z(7) ], [ 0*Z(7), Z(7)^3, 0*Z(7), 0*Z(7) ], [ 0*Z(7), 0*Z(7), Z(7)^3, 0*Z(7) ], [ 0*Z(7), 0*Z(7), 0*Z(7), Z(7)^3 ]], [[ Z(7), Z(7)^4, Z(7)^2, Z(7) ], [ Z(7), Z(7)^3, Z(7)^4, Z(7)^4 ], [ Z(7), Z(7)^5, 0*Z(7), Z(7)^4 ], [ Z(7)^4, Z(7)^4, Z(7)^2, Z(7)^2 ]], [[ Z(7)^0, Z(7), Z(7)^0, 0*Z(7) ], [ Z(7)^5, Z(7)^0, Z(7)^2, Z(7)^2 ], [ Z(7)^3, Z(7)^2, Z(7)^5, Z(7)^0 ], [ 0*Z(7), Z(7), Z(7)^0, Z(7)^0 ]]]);
 
Copy content sage:MS = MatrixSpace(GF(7), 4, 4) G = MatrixGroup([MS([[5, 0, 0, 0], [5, 6, 3, 0], [6, 4, 3, 0], [2, 6, 2, 4]]), MS([[0, 2, 0, 5], [1, 1, 6, 1], [6, 4, 1, 2], [6, 3, 5, 5]]), MS([[2, 0, 0, 0], [4, 4, 0, 0], [2, 1, 2, 0], [3, 2, 3, 4]]), MS([[1, 5, 2, 0], [1, 6, 0, 5], [1, 0, 6, 5], [0, 6, 1, 1]]), MS([[6, 0, 0, 0], [0, 6, 0, 0], [0, 0, 6, 0], [0, 0, 0, 6]]), MS([[3, 4, 2, 3], [3, 6, 4, 4], [3, 5, 0, 4], [4, 4, 2, 2]]), MS([[1, 3, 1, 0], [5, 1, 2, 2], [6, 2, 5, 1], [0, 3, 1, 1]])])
 
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $\SL(2,7)^2$ . $C_2^2$ $C_2^2$ . $\POPlus(4,7)$ $C_2$ . $\GOrthPlus(4,7)$ $(\SL(2,7)\wr C_2)$ . $C_2$ (2) all 5

Elements of the group are displayed as matrices in $\GL_{4}(\F_{7})$.

Homology

Abelianization: $C_{2}^{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 8 normal subgroups (6 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $\SL(2,7)^2$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2^2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $Q_{16}^2:C_2^2$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7^2$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 1 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $94 \times 94$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $65 \times 65$ rational character table.