Properties

Label 4500.n.180.e1.d1
Order $ 5^{2} $
Index $ 2^{2} \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^2$
Order: \(25\)\(\medspace = 5^{2} \)
Index: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Exponent: \(5\)
Generators: $b^{9}d^{4}, c$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_5^2:C_{45}:C_4$
Order: \(4500\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^3.C_9.C_6.C_2.C_2^3$
$\operatorname{Aut}(H)$ $\GL(2,5)$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(1125\)\(\medspace = 3^{2} \cdot 5^{3} \)
$W$$C_4$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_5^2\times C_{15}$
Normalizer:$(C_5\times C_{15}):F_5$
Normal closure:$C_5^3$
Core:$C_1$
Minimal over-subgroups:$C_5^3$$C_5\times C_{15}$$C_5:D_5$
Maximal under-subgroups:$C_5$$C_5$$C_5$$C_5$
Autjugate subgroups:4500.n.180.e1.a14500.n.180.e1.b14500.n.180.e1.c1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$C_5^2:C_{45}:C_4$