Subgroup ($H$) information
Description: | $C_2^2:Q_{16}$ |
Order: | \(64\)\(\medspace = 2^{6} \) |
Index: | \(7\) |
Exponent: | \(8\)\(\medspace = 2^{3} \) |
Generators: |
$a, b, d^{7}$
|
Nilpotency class: | $3$ |
Derived length: | $2$ |
The subgroup is maximal, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.
Ambient group ($G$) information
Description: | $(C_2\times C_{14}):Q_{16}$ |
Order: | \(448\)\(\medspace = 2^{6} \cdot 7 \) |
Exponent: | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_7.(C_2^5\times C_6).C_2^4$ |
$\operatorname{Aut}(H)$ | $C_2^6:D_4$, of order \(512\)\(\medspace = 2^{9} \) |
$\operatorname{res}(S)$ | $C_2^6:D_4$, of order \(512\)\(\medspace = 2^{9} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(6\)\(\medspace = 2 \cdot 3 \) |
$W$ | $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $7$ |
Möbius function | $-1$ |
Projective image | $C_{14}:D_4$ |