Properties

Label 448.762.28.f1.a1
Order $ 2^{4} $
Index $ 2^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times Q_8$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $ab, b^{6}, c$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $(C_2\times C_{14}):Q_{16}$
Order: \(448\)\(\medspace = 2^{6} \cdot 7 \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7.(C_2^5\times C_6).C_2^4$
$\operatorname{Aut}(H)$ $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{res}(S)$$C_2^2\wr C_2$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(96\)\(\medspace = 2^{5} \cdot 3 \)
$W$$C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^2:Q_{16}$
Normal closure:$C_{14}:Q_8$
Core:$C_2\times C_4$
Minimal over-subgroups:$C_{14}:Q_8$$C_2^2:Q_8$$C_2\times Q_{16}$$C_2\times Q_{16}$
Maximal under-subgroups:$C_2\times C_4$$C_2\times C_4$$Q_8$$Q_8$

Other information

Number of subgroups in this conjugacy class$7$
Möbius function$-2$
Projective image$C_{14}:D_4$