Subgroup ($H$) information
| Description: | $C_7\times D_8$ |
| Order: | \(112\)\(\medspace = 2^{4} \cdot 7 \) |
| Index: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
| Generators: |
$a, c^{4}, b^{4}, b^{6}, c^{14}$
|
| Nilpotency class: | $3$ |
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).
Ambient group ($G$) information
| Description: | $C_{28}.D_8$ |
| Order: | \(448\)\(\medspace = 2^{6} \cdot 7 \) |
| Exponent: | \(112\)\(\medspace = 2^{4} \cdot 7 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2^2$ |
| Order: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(2\) |
| Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{28}.(C_2^3\times C_6).C_2^3$ |
| $\operatorname{Aut}(H)$ | $C_{24}:C_2^3$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_{24}:C_2^3$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
| $W$ | $D_8$, of order \(16\)\(\medspace = 2^{4} \) |
Related subgroups
| Centralizer: | $C_{28}$ | ||
| Normalizer: | $C_{28}.D_8$ | ||
| Minimal over-subgroups: | $D_8:C_{14}$ | $C_7:\SD_{32}$ | $C_7:\SD_{32}$ |
| Maximal under-subgroups: | $C_{56}$ | $C_7\times D_4$ | $D_8$ |
Other information
| Möbius function | $2$ |
| Projective image | $C_{14}:D_8$ |