Properties

Label 448.729.4.b1.a1
Order $ 2^{4} \cdot 7 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7\times D_8$
Order: \(112\)\(\medspace = 2^{4} \cdot 7 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Generators: $a, c^{4}, b^{4}, b^{6}, c^{14}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_{28}.D_8$
Order: \(448\)\(\medspace = 2^{6} \cdot 7 \)
Exponent: \(112\)\(\medspace = 2^{4} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{28}.(C_2^3\times C_6).C_2^3$
$\operatorname{Aut}(H)$ $C_{24}:C_2^3$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{24}:C_2^3$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(56\)\(\medspace = 2^{3} \cdot 7 \)
$W$$D_8$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_{28}$
Normalizer:$C_{28}.D_8$
Minimal over-subgroups:$D_8:C_{14}$$C_7:\SD_{32}$$C_7:\SD_{32}$
Maximal under-subgroups:$C_{56}$$C_7\times D_4$$D_8$

Other information

Möbius function$2$
Projective image$C_{14}:D_8$