Subgroup ($H$) information
| Description: | $D_8$ |
| Order: | \(16\)\(\medspace = 2^{4} \) |
| Index: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
| Exponent: | \(8\)\(\medspace = 2^{3} \) |
| Generators: |
$a, b^{6}$
|
| Nilpotency class: | $3$ |
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).
Ambient group ($G$) information
| Description: | $C_{28}.D_8$ |
| Order: | \(448\)\(\medspace = 2^{6} \cdot 7 \) |
| Exponent: | \(112\)\(\medspace = 2^{4} \cdot 7 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $D_{14}$ |
| Order: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
| Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) |
| Automorphism Group: | $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
| Outer Automorphisms: | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{28}.(C_2^3\times C_6).C_2^3$ |
| $\operatorname{Aut}(H)$ | $D_8:C_2$, of order \(32\)\(\medspace = 2^{5} \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $D_8:C_2$, of order \(32\)\(\medspace = 2^{5} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
| $W$ | $D_8$, of order \(16\)\(\medspace = 2^{4} \) |
Related subgroups
| Centralizer: | $C_{28}$ | |||
| Normalizer: | $C_{28}.D_8$ | |||
| Minimal over-subgroups: | $C_7\times D_8$ | $D_8:C_2$ | $\SD_{32}$ | $\SD_{32}$ |
| Maximal under-subgroups: | $C_8$ | $D_4$ |
Other information
| Möbius function | $-14$ |
| Projective image | $C_{14}:D_8$ |