Properties

Label 448.659.16.a1.a1
Order $ 2^{2} \cdot 7 $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{14}$
Order: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $a^{2}b^{14}, b^{4}c^{2}, c^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{56}.(C_2\times C_4)$
Order: \(448\)\(\medspace = 2^{6} \cdot 7 \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2\times Q_8$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
Outer Automorphisms: $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{14}\times D_4).C_6.C_2^5$
$\operatorname{Aut}(H)$ $C_6\times S_3$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(1792\)\(\medspace = 2^{8} \cdot 7 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{14}\times \OD_{16}$
Normalizer:$C_{56}.(C_2\times C_4)$
Minimal over-subgroups:$C_2^2\times C_{14}$$C_2\times C_{28}$$C_2\times C_{28}$
Maximal under-subgroups:$C_{14}$$C_{14}$$C_2^2$

Other information

Möbius function$0$
Projective image$C_2^2.D_{28}$