Subgroup ($H$) information
Description: | $C_{14}\times \OD_{16}$ |
Order: | \(224\)\(\medspace = 2^{5} \cdot 7 \) |
Index: | \(2\) |
Exponent: | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
Generators: |
$a^{2}, c^{2}, c, b^{4}c^{2}, b^{7}, b^{14}$
|
Nilpotency class: | $2$ |
Derived length: | $2$ |
The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), maximal, nonabelian, elementary for $p = 2$ (hence hyperelementary), and metabelian.
Ambient group ($G$) information
Description: | $C_{56}.(C_2\times C_4)$ |
Order: | \(448\)\(\medspace = 2^{6} \cdot 7 \) |
Exponent: | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_{14}\times D_4).C_6.C_2^5$ |
$\operatorname{Aut}(H)$ | $C_6\times C_2^4:D_4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_6\times C_2^4:D_4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
$W$ | $C_2^3$, of order \(8\)\(\medspace = 2^{3} \) |
Related subgroups
Other information
Möbius function | $-1$ |
Projective image | $C_2\times D_{28}$ |