Properties

Label 444672.d.24.g1
Order $ 2^{5} \cdot 3 \cdot 193 $
Index $ 2^{3} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{193}:C_{96}$
Order: \(18528\)\(\medspace = 2^{5} \cdot 3 \cdot 193 \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(18528\)\(\medspace = 2^{5} \cdot 3 \cdot 193 \)
Generators: $a^{24}b^{2676}, a^{48}b^{1728}, b^{2316}, a^{12}b^{3510}, b^{1544}, a^{6}b^{3483}, b^{24}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{4632}.C_{96}$
Order: \(444672\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_{24}$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Automorphism Group: $C_2^3$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $C_2^3$, of order \(8\)\(\medspace = 2^{3} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{2316}.C_{96}.C_2^5$
$\operatorname{Aut}(H)$ $C_{193}.C_{96}.C_2^3$
$W$$C_{193}:C_{96}$, of order \(18528\)\(\medspace = 2^{5} \cdot 3 \cdot 193 \)

Related subgroups

Centralizer:$C_{24}$
Normalizer:$C_{4632}.C_{96}$
Minimal over-subgroups:$C_{579}:C_{96}$$D_{193}:C_{96}$
Maximal under-subgroups:$C_{193}:C_{48}$$C_{193}:C_{32}$$C_{96}$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_{772}:C_{96}$