Properties

Label 440.14.1.a1.a1
Order $ 2^{3} \cdot 5 \cdot 11 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{44}.C_{10}$
Order: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Index: $1$
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Generators: $a^{5}, a^{2}b^{22}, b^{22}, b^{11}, b^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, and metacyclic (hence supersolvable, monomial, and metabelian).

Ambient group ($G$) information

Description: $C_{44}.C_{10}$
Order: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times F_{11}$, of order \(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
$\operatorname{Aut}(H)$ $S_4\times F_{11}$, of order \(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
$W$$C_{22}:C_{10}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{44}.C_{10}$
Complements:$C_1$
Maximal under-subgroups:$C_{11}:C_{20}$$C_{11}:C_{20}$$C_{11}:C_{20}$$Q_8\times C_{11}$$C_5\times Q_8$

Other information

Möbius function$1$
Projective image$C_{22}:C_{10}$