Properties

Label 4375000.b.4._.B
Order $ 2 \cdot 5^{7} \cdot 7 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^7:D_7$
Order: \(1093750\)\(\medspace = 2 \cdot 5^{7} \cdot 7 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Generators: $\langle(6,9,7,10,8)(11,14,12,15,13)(16,18,20,17,19)(21,25,24,23,22)(26,29,27,30,28) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), nonabelian, solvable, and an A-group. Whether it is a direct factor, a semidirect factor, or monomial has not been computed.

Ambient group ($G$) information

Description: $C_5^7:(C_4\times D_7)$
Order: \(4375000\)\(\medspace = 2^{3} \cdot 5^{7} \cdot 7 \)
Exponent: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and an A-group. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(1627500000\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{7} \cdot 7 \cdot 31 \)
$\operatorname{Aut}(H)$ $C_5^6.C_{217}.C_{30}.C_2^3.C_2$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed