Properties

Label 43200.bt.6.d1.a1
Order $ 2^{5} \cdot 3^{2} \cdot 5^{2} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_5\times A_4):S_5$
Order: \(7200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(1,3,4,2)(5,7)(6,9)(10,14)(11,13)(12,15), (1,2)(3,4), (1,4)(5,8)(6,7)(10,11,15,13,12,14), (5,9,8,6,7), (1,3)(2,4), (1,2,4)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $(C_5\times A_4):S_6$
Order: \(43200\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(F_5\times S_4).A_6.C_2^2$
$\operatorname{Aut}(H)$ $F_5\times S_4\times S_5$, of order \(57600\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5^{2} \)
$W$$(C_5\times A_4):S_5$, of order \(7200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$(C_5\times A_4):S_5$
Normal closure:$(C_5\times A_4):S_6$
Core:$C_5\times A_4$
Minimal over-subgroups:$(C_5\times A_4):S_6$
Maximal under-subgroups:$C_5\times A_4\times A_5$$(C_2\times C_{10}):S_5$$C_{15}:S_5$$A_4^2:D_5$$A_4:S_5$$(A_4\times C_5^2):C_4$$S_3\times C_5:S_4$
Autjugate subgroups:43200.bt.6.d1.b1

Other information

Number of subgroups in this conjugacy class$6$
Möbius function$-1$
Projective image$(C_5\times A_4):S_6$