Properties

Label 43200.bt.45.b1.b1
Order $ 2^{6} \cdot 3 \cdot 5 $
Index $ 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5:D_4\times S_4$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Index: \(45\)\(\medspace = 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(1,3,4,2)(5,7)(6,9)(10,14)(11,13)(12,15), (1,2)(3,4), (5,6,9,7,8)(10,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $(C_5\times A_4):S_6$
Order: \(43200\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(F_5\times S_4).A_6.C_2^2$
$\operatorname{Aut}(H)$ $C_2^3\times F_5\times S_4$, of order \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
$W$$D_{10}\times S_4$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_5:D_4\times S_4$
Normal closure:$(C_5\times A_4):S_6$
Core:$C_2\times C_{10}$
Minimal over-subgroups:$(C_2\times C_{10}):S_6$$C_5:S_4^2$
Maximal under-subgroups:$D_{10}:S_4$$(C_2\times C_{10}):D_{12}$$D_{10}\times S_4$$C_5:C_4\times S_4$$A_4\times C_5:D_4$$C_5:\GL(2,\mathbb{Z}/4)$$C_2\times C_{10}\times S_4$$C_2^4:D_{10}$$D_6:D_{10}$$D_4\times S_4$
Autjugate subgroups:43200.bt.45.b1.a1

Other information

Number of subgroups in this conjugacy class$45$
Möbius function$1$
Projective image$(C_5\times A_4):S_6$