Properties

Label 43200.bt.432.c1.a1
Order $ 2^{2} \cdot 5^{2} $
Index $ 2^{4} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}^2$
Order: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Index: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\langle(1,2)(3,4), (5,9,8,6,7), (1,3)(2,4), (1,3)(2,4)(10,15,14,13,11)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and metacyclic.

Ambient group ($G$) information

Description: $(C_5\times A_4):S_6$
Order: \(43200\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(F_5\times S_4).A_6.C_2^2$
$\operatorname{Aut}(H)$ $S_3\times \GL(2,5)$, of order \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
$W$$C_3:C_4$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_{10}^2$
Normalizer:$(A_4\times C_5^2):C_4$
Normal closure:$C_2\times C_{10}\times A_6$
Core:$C_2\times C_{10}$
Minimal over-subgroups:$A_4\times C_5^2$$C_{10}\times D_{10}$
Maximal under-subgroups:$C_5\times C_{10}$$C_2\times C_{10}$$C_2\times C_{10}$$C_2\times C_{10}$

Other information

Number of subgroups in this conjugacy class$36$
Möbius function$0$
Projective image$(C_5\times A_4):S_6$