Properties

Label 432.538.4.b1.a1
Order $ 2^{2} \cdot 3^{3} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:D_6$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\left(\begin{array}{rrr} 1 & 0 & 0 \\ 6 & 6 & 0 \\ 3 & 6 & 1 \end{array}\right), \left(\begin{array}{rrr} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{array}\right), \left(\begin{array}{rrr} 6 & 5 & 2 \\ 1 & 1 & 5 \\ 4 & 0 & 0 \end{array}\right), \left(\begin{array}{rrr} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array}\right), \left(\begin{array}{rrr} 4 & 4 & 1 \\ 6 & 6 & 0 \\ 5 & 4 & 4 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $C_6^2:D_6$
Order: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2:D_6$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_2\times C_3^2:\GL(2,3)$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$\operatorname{res}(S)$$C_6.S_3^2$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$C_3:S_3$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_3^2:D_6$
Normal closure:$C_6^2:D_6$
Core:$C_3\times C_6$
Minimal over-subgroups:$C_6^2:D_6$
Maximal under-subgroups:$C_2\times \He_3$$C_3^2:S_3$$C_3^2:S_3$$C_6\times S_3$$C_6\times S_3$$C_6\times S_3$$C_6\times S_3$

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$-1$
Projective image$C_3:S_4$