Subgroup ($H$) information
Description: | $C_3^2:D_6$ |
Order: | \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
Index: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$\left(\begin{array}{rrr}
1 & 0 & 0 \\
6 & 6 & 0 \\
3 & 6 & 1
\end{array}\right), \left(\begin{array}{rrr}
6 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 6
\end{array}\right), \left(\begin{array}{rrr}
6 & 5 & 2 \\
1 & 1 & 5 \\
4 & 0 & 0
\end{array}\right), \left(\begin{array}{rrr}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right), \left(\begin{array}{rrr}
4 & 4 & 1 \\
6 & 6 & 0 \\
5 & 4 & 4
\end{array}\right)$
|
Derived length: | $3$ |
The subgroup is maximal, nonabelian, and supersolvable (hence solvable and monomial).
Ambient group ($G$) information
Description: | $C_6^2:D_6$ |
Order: | \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2\times C_6^2:D_6$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
$\operatorname{Aut}(H)$ | $C_2\times C_3^2:\GL(2,3)$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
$\operatorname{res}(S)$ | $C_6.S_3^2$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | $1$ |
$W$ | $C_3:S_3$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $4$ |
Möbius function | $-1$ |
Projective image | $C_3:S_4$ |