Subgroup ($H$) information
Description: | $C_{12}$ |
Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Index: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$ab^{3}c^{3}d^{3}, c^{2}, d^{3}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $C_6^2:D_6$ |
Order: | \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian, monomial (hence solvable), and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_6^2:D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
$\operatorname{Aut}(H)$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
$\operatorname{res}(S)$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
$W$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
Related subgroups
Centralizer: | $C_{12}$ | |||
Normalizer: | $S_3\times D_4$ | |||
Normal closure: | $C_3^2:S_4$ | |||
Core: | $C_3$ | |||
Minimal over-subgroups: | $C_3:C_{12}$ | $C_4\times S_3$ | $D_{12}$ | $C_3\times D_4$ |
Maximal under-subgroups: | $C_6$ | $C_4$ |
Other information
Number of subgroups in this conjugacy class | $9$ |
Möbius function | $0$ |
Projective image | $C_6^2:D_6$ |