Subgroup ($H$) information
Description: | $C_{12}$ |
Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Index: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$c^{3}, b, c^{6}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is normal and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $C_4:C_4\times \He_3$ |
Order: | \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Nilpotency class: | $2$ |
Derived length: | $2$ |
The ambient group is nonabelian, nilpotent (hence solvable, supersolvable, and monomial), and metabelian.
Quotient group ($Q$) structure
Description: | $C_3\times C_{12}$ |
Order: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Automorphism Group: | $C_2\times \GL(2,3)$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Outer Automorphisms: | $C_2\times \GL(2,3)$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_6^2:(D_4\times \GL(2,3))$, of order \(13824\)\(\medspace = 2^{9} \cdot 3^{3} \) |
$\operatorname{Aut}(H)$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
$\operatorname{res}(S)$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_6.C_6^2$ | |
Normalizer: | $C_4:C_4\times \He_3$ | |
Minimal over-subgroups: | $C_3\times C_{12}$ | $C_2\times C_{12}$ |
Maximal under-subgroups: | $C_6$ | $C_4$ |
Other information
Number of subgroups in this autjugacy class | $2$ |
Number of conjugacy classes in this autjugacy class | $2$ |
Möbius function | $0$ |
Projective image | $C_6\times C_{12}$ |