Properties

Label 432.207.1.a1
Order $ 2^{4} \cdot 3^{3} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4:C_4\times \He_3$
Order: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Index: $1$
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a^{3}, c^{6}, a^{6}, c^{3}, b, a^{4}, c^{4}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), the radical, a direct factor, nonabelian, a Hall subgroup, and metabelian.

Ambient group ($G$) information

Description: $C_4:C_4\times \He_3$
Order: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, nilpotent (hence solvable, supersolvable, and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $0$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2:(D_4\times \GL(2,3))$, of order \(13824\)\(\medspace = 2^{9} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_6^2:(D_4\times \GL(2,3))$, of order \(13824\)\(\medspace = 2^{9} \cdot 3^{3} \)
$W$$C_6^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$C_4:C_4\times \He_3$
Complements:$C_1$
Maximal under-subgroups:$C_6.C_6^2$$C_6.C_6^2$$C_{12}:C_{12}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_6^2$