Properties

Label 421875000.n.15625._.A
Order $ 2^{3} \cdot 3^{3} \cdot 5^{3} $
Index $ 5^{6} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}^2:(C_6\times F_5)$
Order: \(27000\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{3} \)
Index: \(15625\)\(\medspace = 5^{6} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(1,2,3,4,5)(6,42,8,44,10,41,7,43,9,45)(11,15,14,13,12)(16,24,19,22,17,25,20,23,18,21) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, monomial (hence solvable), and metabelian.

Ambient group ($G$) information

Description: $C_5^7.C_{15}^2:(C_2\times C_{12})$
Order: \(421875000\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{9} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial or rational has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(81000000000\)\(\medspace = 2^{9} \cdot 3^{4} \cdot 5^{9} \)
$\operatorname{Aut}(H)$ $(C_5\times C_{15}).C_{15}.C_{12}^2.C_2^3$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$C_{15}^2:(C_6\times F_5)$
Normal closure:$C_5^7.C_{15}^2:(C_2\times C_{12})$
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$15625$
Möbius function not computed
Projective image not computed