Properties

Label 4200.m.50.a1.a1
Order $ 2^{2} \cdot 3 \cdot 7 $
Index $ 2 \cdot 5^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{84}$
Order: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Index: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $a^{10}, b^{15}, a^{20}, b^{70}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{105}:C_{40}$
Order: \(4200\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \)
Exponent: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_5\times D_5$
Order: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4\times F_5$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)
Outer Automorphisms: $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_4\times F_5\times S_3\times F_7$
$\operatorname{Aut}(H)$ $C_2^2\times C_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^2\times C_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3360\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 7 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_5\times C_{420}$
Normalizer:$C_{105}:C_{40}$
Minimal over-subgroups:$C_{420}$$C_{420}$$C_{420}$$C_{420}$$C_{21}:C_8$
Maximal under-subgroups:$C_{42}$$C_{28}$$C_{12}$

Other information

Möbius function$-5$
Projective image$C_5\times D_{105}$