Subgroup ($H$) information
Description: | $C_{12}$ |
Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Index: | \(350\)\(\medspace = 2 \cdot 5^{2} \cdot 7 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$a^{10}, b^{70}, a^{20}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $C_{105}:C_{40}$ |
Order: | \(4200\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \) |
Exponent: | \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Quotient group ($Q$) structure
Description: | $C_5\times D_{35}$ |
Order: | \(350\)\(\medspace = 2 \cdot 5^{2} \cdot 7 \) |
Exponent: | \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \) |
Automorphism Group: | $C_4\times F_5\times F_7$ |
Outer Automorphisms: | $C_4\times C_{12}$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^2\times C_4\times F_5\times S_3\times F_7$ |
$\operatorname{Aut}(H)$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_5\times C_{420}$ | |||||
Normalizer: | $C_{105}:C_{40}$ | |||||
Minimal over-subgroups: | $C_{84}$ | $C_{60}$ | $C_{60}$ | $C_{60}$ | $C_{60}$ | $C_3:C_8$ |
Maximal under-subgroups: | $C_6$ | $C_4$ |
Other information
Möbius function | $35$ |
Projective image | $C_5\times D_{105}$ |