Properties

Label 4200.m.35.a1.a1
Order $ 2^{3} \cdot 3 \cdot 5 $
Index $ 5 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3:C_{40}$
Order: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Index: \(35\)\(\medspace = 5 \cdot 7 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $a^{5}, a^{10}, a^{20}, a^{8}, b^{70}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{105}:C_{40}$
Order: \(4200\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \)
Exponent: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_4\times F_5\times S_3\times F_7$
$\operatorname{Aut}(H)$ $C_{12}:C_2^3$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\operatorname{res}(S)$$C_{12}:C_2^3$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_{20}$
Normalizer:$C_3:C_{40}$
Normal closure:$C_{105}:C_{40}$
Core:$C_{60}$
Minimal over-subgroups:$C_{21}:C_{40}$$C_{15}:C_{40}$
Maximal under-subgroups:$C_{60}$$C_{40}$$C_3:C_8$

Other information

Number of subgroups in this conjugacy class$35$
Möbius function$1$
Projective image$D_{105}$