Properties

Label 419904.gm.3.a1
Order $ 2^{6} \cdot 3^{7} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4.D_6^2:D_6$
Order: \(139968\)\(\medspace = 2^{6} \cdot 3^{7} \)
Index: \(3\)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(19,21)(20,22), (1,16,17)(2,4,10,11,9,18,8,15,13)(3,5,6)(7,12,14), (1,9,17,2,5,18) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_3^4.D_6^2:S_3^2$
Order: \(419904\)\(\medspace = 2^{6} \cdot 3^{8} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^6.C_3^2.C_2^4.C_6.C_2^5$
$\operatorname{Aut}(H)$ $C_3^6.C_6.C_2.C_6.C_2^6$
$W$$C_3^6.(D_4\times D_6)$, of order \(69984\)\(\medspace = 2^{5} \cdot 3^{7} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_3^4.D_6^2:D_6$
Normal closure:$C_3^4.D_6^2:S_3^2$
Core:$C_3^4.D_6^2:S_3$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_3^5:S_3.D_6^2$