Properties

Label 416.81.208.d1.b1
Order $ 2 $
Index $ 2^{4} \cdot 13 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(208\)\(\medspace = 2^{4} \cdot 13 \)
Exponent: \(2\)
Generators: $a^{2}bc^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_{26}.C_4^2$
Order: \(416\)\(\medspace = 2^{5} \cdot 13 \)
Exponent: \(52\)\(\medspace = 2^{2} \cdot 13 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\wr C_2\times F_{13}$, of order \(4992\)\(\medspace = 2^{7} \cdot 3 \cdot 13 \)
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\operatorname{res}(S)$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(192\)\(\medspace = 2^{6} \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2.C_4^2$
Normalizer:$C_2.C_4^2$
Normal closure:$D_{13}$
Core:$C_1$
Minimal over-subgroups:$D_{13}$$C_2^2$$C_2^2$$C_2^2$
Maximal under-subgroups:$C_1$
Autjugate subgroups:416.81.208.d1.a1

Other information

Number of subgroups in this conjugacy class$13$
Möbius function$0$
Projective image$C_{26}.C_4^2$