Subgroup ($H$) information
Description: | $D_{13}$ |
Order: | \(26\)\(\medspace = 2 \cdot 13 \) |
Index: | \(16\)\(\medspace = 2^{4} \) |
Exponent: | \(26\)\(\medspace = 2 \cdot 13 \) |
Generators: |
$a^{2}bc^{4}, c^{4}$
|
Derived length: | $2$ |
The subgroup is normal, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
Description: | $C_{26}.C_4^2$ |
Order: | \(416\)\(\medspace = 2^{5} \cdot 13 \) |
Exponent: | \(52\)\(\medspace = 2^{2} \cdot 13 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_4:C_4$ |
Order: | \(16\)\(\medspace = 2^{4} \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Automorphism Group: | $C_2^2\wr C_2$, of order \(32\)\(\medspace = 2^{5} \) |
Outer Automorphisms: | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
Derived length: | $2$ |
The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^2\wr C_2\times F_{13}$, of order \(4992\)\(\medspace = 2^{7} \cdot 3 \cdot 13 \) |
$\operatorname{Aut}(H)$ | $F_{13}$, of order \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \) |
$\operatorname{res}(S)$ | $F_{13}$, of order \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(16\)\(\medspace = 2^{4} \) |
$W$ | $C_{13}:C_4$, of order \(52\)\(\medspace = 2^{2} \cdot 13 \) |
Related subgroups
Centralizer: | $C_2\times C_4$ | ||
Normalizer: | $C_{26}.C_4^2$ | ||
Minimal over-subgroups: | $D_{26}$ | $D_{26}$ | $D_{26}$ |
Maximal under-subgroups: | $C_{13}$ | $C_2$ | |
Autjugate subgroups: | 416.81.16.d1.a1 |
Other information
Möbius function | $0$ |
Projective image | $C_{26}.C_4^2$ |