Properties

Label 416.81.16.d1.b1
Order $ 2 \cdot 13 $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{13}$
Order: \(26\)\(\medspace = 2 \cdot 13 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(26\)\(\medspace = 2 \cdot 13 \)
Generators: $a^{2}bc^{4}, c^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{26}.C_4^2$
Order: \(416\)\(\medspace = 2^{5} \cdot 13 \)
Exponent: \(52\)\(\medspace = 2^{2} \cdot 13 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_4:C_4$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2^2\wr C_2$, of order \(32\)\(\medspace = 2^{5} \)
Outer Automorphisms: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\wr C_2\times F_{13}$, of order \(4992\)\(\medspace = 2^{7} \cdot 3 \cdot 13 \)
$\operatorname{Aut}(H)$ $F_{13}$, of order \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)
$\operatorname{res}(S)$$F_{13}$, of order \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_{13}:C_4$, of order \(52\)\(\medspace = 2^{2} \cdot 13 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$C_{26}.C_4^2$
Minimal over-subgroups:$D_{26}$$D_{26}$$D_{26}$
Maximal under-subgroups:$C_{13}$$C_2$
Autjugate subgroups:416.81.16.d1.a1

Other information

Möbius function$0$
Projective image$C_{26}.C_4^2$