Subgroup ($H$) information
| Description: | $C_2^2\times D_4$ | 
| Order: | \(32\)\(\medspace = 2^{5} \) | 
| Index: | \(128\)\(\medspace = 2^{7} \) | 
| Exponent: | \(4\)\(\medspace = 2^{2} \) | 
| Generators: | 
		
    $\left(\begin{array}{rr}
21 & 4 \\
26 & 27
\end{array}\right), \left(\begin{array}{rr}
17 & 16 \\
16 & 17
\end{array}\right), \left(\begin{array}{rr}
25 & 8 \\
16 & 9
\end{array}\right), \left(\begin{array}{rr}
17 & 0 \\
0 & 17
\end{array}\right)$
    
    
    
         | 
| Nilpotency class: | $2$ | 
| Derived length: | $2$ | 
The subgroup is normal, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.
Ambient group ($G$) information
| Description: | $C_4^4.C_2^4$ | 
| Order: | \(4096\)\(\medspace = 2^{12} \) | 
| Exponent: | \(8\)\(\medspace = 2^{3} \) | 
| Nilpotency class: | $3$ | 
| Derived length: | $2$ | 
The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2^2\times C_4\times C_8$ | 
| Order: | \(128\)\(\medspace = 2^{7} \) | 
| Exponent: | \(8\)\(\medspace = 2^{3} \) | 
| Automorphism Group: | $C_2^8.C_2\wr D_6$, of order \(196608\)\(\medspace = 2^{16} \cdot 3 \) | 
| Outer Automorphisms: | $C_2^8.C_2\wr D_6$, of order \(196608\)\(\medspace = 2^{16} \cdot 3 \) | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | Group of order \(2147483648\)\(\medspace = 2^{31} \) | 
| $\operatorname{Aut}(H)$ | $C_2^6:(C_2\times S_4)$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \) | 
| $\card{W}$ | \(16\)\(\medspace = 2^{4} \) | 
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $8$ | 
| Number of conjugacy classes in this autjugacy class | $8$ | 
| Möbius function | not computed | 
| Projective image | not computed |