Properties

Label 4096.mq.16.BJ
Order $ 2^{8} $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_8^2$
Order: \(256\)\(\medspace = 2^{8} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $\left(\begin{array}{rr} 7 & 16 \\ 12 & 27 \end{array}\right), \left(\begin{array}{rr} 5 & 16 \\ 24 & 29 \end{array}\right), \left(\begin{array}{rr} 17 & 16 \\ 16 & 17 \end{array}\right), \left(\begin{array}{rr} 17 & 16 \\ 0 & 17 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_4^4.C_2^4$
Order: \(4096\)\(\medspace = 2^{12} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2\times D_4$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2\wr C_2^2$, of order \(64\)\(\medspace = 2^{6} \)
Outer Automorphisms: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(2147483648\)\(\medspace = 2^{31} \)
$\operatorname{Aut}(H)$ $C_2^4.C_2^6.A_4^2.C_2^3.C_2$
$\card{W}$\(2\)

Related subgroups

Centralizer:$C_4^4.C_2^3$
Normalizer:$C_4^4.C_2^4$
Minimal over-subgroups:$C_2\times C_4\times C_8^2$$C_2\times C_4\times C_8^2$$C_2^3:C_8^2$$C_2^3\times C_8^2$
Maximal under-subgroups:$C_2^2\times C_4\times C_8$$C_2^2\times C_4\times C_8$$C_2\times C_8^2$$C_2\times C_8^2$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image not computed