Properties

Label 408146688.xl.192._.C
Order $ 2^{2} \cdot 3^{12} $
Index $ 2^{6} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(2125764\)\(\medspace = 2^{2} \cdot 3^{12} \)
Index: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: not computed
Generators: $\langle(13,15,14)(31,32,33), (25,26,27), (10,11,12)(13,14,15)(28,30,29)(31,33,32) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group. Whether it is a direct factor, a semidirect factor, elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_3^{12}.C_2^6.D_6$
Order: \(408146688\)\(\medspace = 2^{8} \cdot 3^{13} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^3:S_4$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^4:S_4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(6530347008\)\(\medspace = 2^{12} \cdot 3^{13} \)
$\operatorname{Aut}(H)$ not computed
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed