Properties

Label 408146688.xl
Order \( 2^{8} \cdot 3^{13} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{12} \cdot 3^{13} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \)
Perm deg. $36$
Trans deg. $36$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,18,35,21)(2,17,36,20)(3,16,34,19)(4,11,24,32,6,12,23,31,5,10,22,33)(7,14,26,30,9,15,25,29,8,13,27,28), (1,4,21,22)(2,6,19,23)(3,5,20,24)(7,17,25,36,8,16,27,35,9,18,26,34)(10,30)(11,29)(12,28)(13,33,15,31,14,32) >;
 
Copy content gap:G := Group( (1,18,35,21)(2,17,36,20)(3,16,34,19)(4,11,24,32,6,12,23,31,5,10,22,33)(7,14,26,30,9,15,25,29,8,13,27,28), (1,4,21,22)(2,6,19,23)(3,5,20,24)(7,17,25,36,8,16,27,35,9,18,26,34)(10,30)(11,29)(12,28)(13,33,15,31,14,32) );
 
Copy content sage:G = PermutationGroup(['(1,18,35,21)(2,17,36,20)(3,16,34,19)(4,11,24,32,6,12,23,31,5,10,22,33)(7,14,26,30,9,15,25,29,8,13,27,28)', '(1,4,21,22)(2,6,19,23)(3,5,20,24)(7,17,25,36,8,16,27,35,9,18,26,34)(10,30)(11,29)(12,28)(13,33,15,31,14,32)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(17827947599306434269293137056357661230722565262501510439627373907738705999041475733312822600022631362384588553921839918730966948742822551328196421387322181532858160480067188376832401120432640624706634315995439063375052249697093749026834946658930918001412349104460622922181934515713220513055016840514446421456923303532546199461454676211239049647841351622852073142014954667219605765910860417177169280989908447860077232693929475058258003988924162601317651832280320134102897630099017261619287526979210592758333836012178146667362528638635957408757032253614031224920382833451452186966477841740306502313676262966632378063646177277057879013488333505412717527469572501318559881211684585030997738486062571192654858937778366643415912724581905411294327252035591704253452117039982420471392456847227706742161676431039847348594716296130397733023293201571157110574935854866456901099733984496242334497424823998390927557779814715170489965396817462700913093193148371448316033445040705577270222723223800753233548855499142291762114149133606803641548137735680095979345885003730222918733725163686127160501064394324091028377945721772628330441211644003851786862751558631067608911738806810221990527028144826650885073645382399,408146688)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21;
 

Group information

Description:$C_3^{12}.C_2^6.D_6$
Order: \(408146688\)\(\medspace = 2^{8} \cdot 3^{13} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(6530347008\)\(\medspace = 2^{12} \cdot 3^{13} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 8, $C_3$ x 13
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18
Elements 1 401679 1371248 8293104 89766144 67184640 195780240 45349632 408146688
Conjugacy classes   1 14 1028 13 1181 41 281 2 2561
Divisions 1 14 796 13 1060 41 202 2 2129
Autjugacy classes 1 12 334 10 536 11 101 1 1006

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 24 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o \mid c^{2}=d^{6}=e^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([21, 2, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 1422924048, 12892104205, 106, 15216139514, 1689297920, 615308403, 16501389936, 5111491437, 2660699164, 7261011475, 9308090341, 926433757, 298, 1312421, 14265538586, 2384774831, 1076, 11741593254, 26688819051, 11080529004, 1297261545, 2179154844, 64056, 426, 34655959303, 8642987164, 13030299121, 1059904006, 4123, 56282007608, 24531350285, 8924925353, 1667919023, 1783308080, 85163, 394120700, 240045842, 554, 38812193289, 19400663550, 10352966451, 4486315752, 30333, 518832855, 28749759202, 36502631581, 2771610586, 499033, 2829153190, 79376356, 281018587, 15857404, 47560096, 682, 5225483, 28523238944, 16150627637, 435530, 36425, 6227, 11196077268, 52776094677, 20734900695, 8780807019, 2572538064, 382761426, 10466979, 62201592, 11526828, 810, 75369595405, 56732949538, 1524151, 1524193, 254155, 42517, 7279, 71249310734, 28317159395, 22467945836, 5922745997, 19595618, 544502, 45584, 4046, 376233999, 62235371556, 20609310009, 72801, 12363, 22630932592, 6063573637, 5925166186, 5896292068, 492745822, 79888216, 26436790, 38824, 83525359697, 38131031270, 26468000051, 6801605072, 158723813, 83607737, 803099, 122741, 32739118290, 50212924311, 57920496, 502625190, 185037234, 16260276, 388098, 151565057299, 18210850600, 40557288301, 4236986962, 1587237223, 132451345, 131483707, 27488389, 4191031, 161859249236, 35198309201, 37995750386, 8890814099, 4722030536, 1020572930, 169905140, 23226818, 1704296]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o := Explode([G.1, G.2, G.4, G.5, G.7, G.9, G.11, G.13, G.15, G.16, G.17, G.18, G.19, G.20, G.21]); AssignNames(~G, ["a", "b", "b2", "c", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "j", "k", "l", "m", "n", "o"]);
 
Copy content gap:G := PcGroupCode(17827947599306434269293137056357661230722565262501510439627373907738705999041475733312822600022631362384588553921839918730966948742822551328196421387322181532858160480067188376832401120432640624706634315995439063375052249697093749026834946658930918001412349104460622922181934515713220513055016840514446421456923303532546199461454676211239049647841351622852073142014954667219605765910860417177169280989908447860077232693929475058258003988924162601317651832280320134102897630099017261619287526979210592758333836012178146667362528638635957408757032253614031224920382833451452186966477841740306502313676262966632378063646177277057879013488333505412717527469572501318559881211684585030997738486062571192654858937778366643415912724581905411294327252035591704253452117039982420471392456847227706742161676431039847348594716296130397733023293201571157110574935854866456901099733984496242334497424823998390927557779814715170489965396817462700913093193148371448316033445040705577270222723223800753233548855499142291762114149133606803641548137735680095979345885003730222918733725163686127160501064394324091028377945721772628330441211644003851786862751558631067608911738806810221990527028144826650885073645382399,408146688); a := G.1; b := G.2; c := G.4; d := G.5; e := G.7; f := G.9; g := G.11; h := G.13; i := G.15; j := G.16; k := G.17; l := G.18; m := G.19; n := G.20; o := G.21;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(17827947599306434269293137056357661230722565262501510439627373907738705999041475733312822600022631362384588553921839918730966948742822551328196421387322181532858160480067188376832401120432640624706634315995439063375052249697093749026834946658930918001412349104460622922181934515713220513055016840514446421456923303532546199461454676211239049647841351622852073142014954667219605765910860417177169280989908447860077232693929475058258003988924162601317651832280320134102897630099017261619287526979210592758333836012178146667362528638635957408757032253614031224920382833451452186966477841740306502313676262966632378063646177277057879013488333505412717527469572501318559881211684585030997738486062571192654858937778366643415912724581905411294327252035591704253452117039982420471392456847227706742161676431039847348594716296130397733023293201571157110574935854866456901099733984496242334497424823998390927557779814715170489965396817462700913093193148371448316033445040705577270222723223800753233548855499142291762114149133606803641548137735680095979345885003730222918733725163686127160501064394324091028377945721772628330441211644003851786862751558631067608911738806810221990527028144826650885073645382399,408146688)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(17827947599306434269293137056357661230722565262501510439627373907738705999041475733312822600022631362384588553921839918730966948742822551328196421387322181532858160480067188376832401120432640624706634315995439063375052249697093749026834946658930918001412349104460622922181934515713220513055016840514446421456923303532546199461454676211239049647841351622852073142014954667219605765910860417177169280989908447860077232693929475058258003988924162601317651832280320134102897630099017261619287526979210592758333836012178146667362528638635957408757032253614031224920382833451452186966477841740306502313676262966632378063646177277057879013488333505412717527469572501318559881211684585030997738486062571192654858937778366643415912724581905411294327252035591704253452117039982420471392456847227706742161676431039847348594716296130397733023293201571157110574935854866456901099733984496242334497424823998390927557779814715170489965396817462700913093193148371448316033445040705577270222723223800753233548855499142291762114149133606803641548137735680095979345885003730222918733725163686127160501064394324091028377945721772628330441211644003851786862751558631067608911738806810221990527028144826650885073645382399,408146688)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21;
 
Permutation group:Degree $36$ $\langle(1,18,35,21)(2,17,36,20)(3,16,34,19)(4,11,24,32,6,12,23,31,5,10,22,33)(7,14,26,30,9,15,25,29,8,13,27,28) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,18,35,21)(2,17,36,20)(3,16,34,19)(4,11,24,32,6,12,23,31,5,10,22,33)(7,14,26,30,9,15,25,29,8,13,27,28), (1,4,21,22)(2,6,19,23)(3,5,20,24)(7,17,25,36,8,16,27,35,9,18,26,34)(10,30)(11,29)(12,28)(13,33,15,31,14,32) >;
 
Copy content gap:G := Group( (1,18,35,21)(2,17,36,20)(3,16,34,19)(4,11,24,32,6,12,23,31,5,10,22,33)(7,14,26,30,9,15,25,29,8,13,27,28), (1,4,21,22)(2,6,19,23)(3,5,20,24)(7,17,25,36,8,16,27,35,9,18,26,34)(10,30)(11,29)(12,28)(13,33,15,31,14,32) );
 
Copy content sage:G = PermutationGroup(['(1,18,35,21)(2,17,36,20)(3,16,34,19)(4,11,24,32,6,12,23,31,5,10,22,33)(7,14,26,30,9,15,25,29,8,13,27,28)', '(1,4,21,22)(2,6,19,23)(3,5,20,24)(7,17,25,36,8,16,27,35,9,18,26,34)(10,30)(11,29)(12,28)(13,33,15,31,14,32)'])
 
Transitive group: 36T87383 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^{12}.C_2^5)$ . $S_4$ (3) $C_3^{12}$ . $(C_2^5:S_4)$ $(C_3^{12}.C_2^6)$ . $D_6$ $(C_3^{12}.C_2^6.S_3)$ . $C_2$ all 20

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{5}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 31 normal subgroups (19 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_3^{12}.C_2^6.C_3$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 6 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $2561 \times 2561$ character table is not available for this group.

Rational character table

The $2129 \times 2129$ rational character table is not available for this group.