| Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o \mid c^{2}=d^{6}=e^{6}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([21, 2, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 1422924048, 12892104205, 106, 15216139514, 1689297920, 615308403, 16501389936, 5111491437, 2660699164, 7261011475, 9308090341, 926433757, 298, 1312421, 14265538586, 2384774831, 1076, 11741593254, 26688819051, 11080529004, 1297261545, 2179154844, 64056, 426, 34655959303, 8642987164, 13030299121, 1059904006, 4123, 56282007608, 24531350285, 8924925353, 1667919023, 1783308080, 85163, 394120700, 240045842, 554, 38812193289, 19400663550, 10352966451, 4486315752, 30333, 518832855, 28749759202, 36502631581, 2771610586, 499033, 2829153190, 79376356, 281018587, 15857404, 47560096, 682, 5225483, 28523238944, 16150627637, 435530, 36425, 6227, 11196077268, 52776094677, 20734900695, 8780807019, 2572538064, 382761426, 10466979, 62201592, 11526828, 810, 75369595405, 56732949538, 1524151, 1524193, 254155, 42517, 7279, 71249310734, 28317159395, 22467945836, 5922745997, 19595618, 544502, 45584, 4046, 376233999, 62235371556, 20609310009, 72801, 12363, 22630932592, 6063573637, 5925166186, 5896292068, 492745822, 79888216, 26436790, 38824, 83525359697, 38131031270, 26468000051, 6801605072, 158723813, 83607737, 803099, 122741, 32739118290, 50212924311, 57920496, 502625190, 185037234, 16260276, 388098, 151565057299, 18210850600, 40557288301, 4236986962, 1587237223, 132451345, 131483707, 27488389, 4191031, 161859249236, 35198309201, 37995750386, 8890814099, 4722030536, 1020572930, 169905140, 23226818, 1704296]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o := Explode([G.1, G.2, G.4, G.5, G.7, G.9, G.11, G.13, G.15, G.16, G.17, G.18, G.19, G.20, G.21]); AssignNames(~G, ["a", "b", "b2", "c", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "j", "k", "l", "m", "n", "o"]);
gap:G := PcGroupCode(17827947599306434269293137056357661230722565262501510439627373907738705999041475733312822600022631362384588553921839918730966948742822551328196421387322181532858160480067188376832401120432640624706634315995439063375052249697093749026834946658930918001412349104460622922181934515713220513055016840514446421456923303532546199461454676211239049647841351622852073142014954667219605765910860417177169280989908447860077232693929475058258003988924162601317651832280320134102897630099017261619287526979210592758333836012178146667362528638635957408757032253614031224920382833451452186966477841740306502313676262966632378063646177277057879013488333505412717527469572501318559881211684585030997738486062571192654858937778366643415912724581905411294327252035591704253452117039982420471392456847227706742161676431039847348594716296130397733023293201571157110574935854866456901099733984496242334497424823998390927557779814715170489965396817462700913093193148371448316033445040705577270222723223800753233548855499142291762114149133606803641548137735680095979345885003730222918733725163686127160501064394324091028377945721772628330441211644003851786862751558631067608911738806810221990527028144826650885073645382399,408146688); a := G.1; b := G.2; c := G.4; d := G.5; e := G.7; f := G.9; g := G.11; h := G.13; i := G.15; j := G.16; k := G.17; l := G.18; m := G.19; n := G.20; o := G.21;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(17827947599306434269293137056357661230722565262501510439627373907738705999041475733312822600022631362384588553921839918730966948742822551328196421387322181532858160480067188376832401120432640624706634315995439063375052249697093749026834946658930918001412349104460622922181934515713220513055016840514446421456923303532546199461454676211239049647841351622852073142014954667219605765910860417177169280989908447860077232693929475058258003988924162601317651832280320134102897630099017261619287526979210592758333836012178146667362528638635957408757032253614031224920382833451452186966477841740306502313676262966632378063646177277057879013488333505412717527469572501318559881211684585030997738486062571192654858937778366643415912724581905411294327252035591704253452117039982420471392456847227706742161676431039847348594716296130397733023293201571157110574935854866456901099733984496242334497424823998390927557779814715170489965396817462700913093193148371448316033445040705577270222723223800753233548855499142291762114149133606803641548137735680095979345885003730222918733725163686127160501064394324091028377945721772628330441211644003851786862751558631067608911738806810221990527028144826650885073645382399,408146688)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(17827947599306434269293137056357661230722565262501510439627373907738705999041475733312822600022631362384588553921839918730966948742822551328196421387322181532858160480067188376832401120432640624706634315995439063375052249697093749026834946658930918001412349104460622922181934515713220513055016840514446421456923303532546199461454676211239049647841351622852073142014954667219605765910860417177169280989908447860077232693929475058258003988924162601317651832280320134102897630099017261619287526979210592758333836012178146667362528638635957408757032253614031224920382833451452186966477841740306502313676262966632378063646177277057879013488333505412717527469572501318559881211684585030997738486062571192654858937778366643415912724581905411294327252035591704253452117039982420471392456847227706742161676431039847348594716296130397733023293201571157110574935854866456901099733984496242334497424823998390927557779814715170489965396817462700913093193148371448316033445040705577270222723223800753233548855499142291762114149133606803641548137735680095979345885003730222918733725163686127160501064394324091028377945721772628330441211644003851786862751558631067608911738806810221990527028144826650885073645382399,408146688)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21;
|
| Permutation group: | Degree $36$
$\langle(1,18,35,21)(2,17,36,20)(3,16,34,19)(4,11,24,32,6,12,23,31,5,10,22,33)(7,14,26,30,9,15,25,29,8,13,27,28) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 36 | (1,18,35,21)(2,17,36,20)(3,16,34,19)(4,11,24,32,6,12,23,31,5,10,22,33)(7,14,26,30,9,15,25,29,8,13,27,28), (1,4,21,22)(2,6,19,23)(3,5,20,24)(7,17,25,36,8,16,27,35,9,18,26,34)(10,30)(11,29)(12,28)(13,33,15,31,14,32) >;
gap:G := Group( (1,18,35,21)(2,17,36,20)(3,16,34,19)(4,11,24,32,6,12,23,31,5,10,22,33)(7,14,26,30,9,15,25,29,8,13,27,28), (1,4,21,22)(2,6,19,23)(3,5,20,24)(7,17,25,36,8,16,27,35,9,18,26,34)(10,30)(11,29)(12,28)(13,33,15,31,14,32) );
sage:G = PermutationGroup(['(1,18,35,21)(2,17,36,20)(3,16,34,19)(4,11,24,32,6,12,23,31,5,10,22,33)(7,14,26,30,9,15,25,29,8,13,27,28)', '(1,4,21,22)(2,6,19,23)(3,5,20,24)(7,17,25,36,8,16,27,35,9,18,26,34)(10,30)(11,29)(12,28)(13,33,15,31,14,32)'])
|
| Transitive group: |
36T87383 |
|
|
|
more information |
| Direct product: |
not computed |
| Semidirect product: |
not computed |
| Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
| Possibly split product: |
$(C_3^{12}.C_2^5)$ . $S_4$ (3) |
$C_3^{12}$ . $(C_2^5:S_4)$ |
$(C_3^{12}.C_2^6)$ . $D_6$ |
$(C_3^{12}.C_2^6.S_3)$ . $C_2$ |
all 20 |
Elements of the group are displayed as permutations of degree 36.
The $2561 \times 2561$ character table is not available for this group.
The $2129 \times 2129$ rational character table is not available for this group.