Properties

Label 4056.bb.4.a1.b1
Order $ 2 \cdot 3 \cdot 13^{2} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{13}^2:S_3$
Order: \(1014\)\(\medspace = 2 \cdot 3 \cdot 13^{2} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \)
Generators: $ab^{7}c^{2}d^{6}, cd^{6}, d, b^{4}c^{4}d^{12}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, a semidirect factor, nonabelian, monomial (hence solvable), and an A-group.

Ambient group ($G$) information

Description: $C_{13}^2:(C_4\times S_3)$
Order: \(4056\)\(\medspace = 2^{3} \cdot 3 \cdot 13^{2} \)
Exponent: \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Quotient group ($Q$) structure

Description: $C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{13}^2.(C_6\times S_3)$, of order \(24336\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 13^{2} \)
$\operatorname{Aut}(H)$ $C_{13}^2:(S_3\times C_{12})$, of order \(12168\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 13^{2} \)
$\operatorname{res}(S)$$C_{13}^2:(S_3\times C_{12})$, of order \(12168\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 13^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$C_{13}^2:(C_4\times S_3)$, of order \(4056\)\(\medspace = 2^{3} \cdot 3 \cdot 13^{2} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_{13}^2:(C_4\times S_3)$
Complements:$C_4$ $C_4$
Minimal over-subgroups:$C_{13}^2:D_6$
Maximal under-subgroups:$C_{13}^2:C_3$$C_{13}\times D_{13}$$S_3$
Autjugate subgroups:4056.bb.4.a1.a1

Other information

Möbius function$0$
Projective image$C_{13}^2:(C_4\times S_3)$