Subgroup ($H$) information
| Description: | $C_2^2\times D_{14}$ |
| Order: | \(112\)\(\medspace = 2^{4} \cdot 7 \) |
| Index: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) |
| Generators: |
$ab^{3}, d, e, c^{42}, c^{12}$
|
| Derived length: | $2$ |
The subgroup is normal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_{28}:(C_6\times S_4)$ |
| Order: | \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \) |
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $C_6\times S_3$ |
| Order: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Outer Automorphisms: | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
| Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_{14}\times A_4).C_6.C_2^4$ |
| $\operatorname{Aut}(H)$ | $F_7\times C_2^3:\GL(3,2)$, of order \(56448\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7^{2} \) |
| $\operatorname{res}(S)$ | $D_6\times F_7$, of order \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(16\)\(\medspace = 2^{4} \) |
| $W$ | $D_6\times F_7$, of order \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \) |
Related subgroups
Other information
| Möbius function | $6$ |
| Projective image | $C_2\times S_4\times F_7$ |