Properties

Label 4032.fk.36.a1.a1
Order $ 2^{4} \cdot 7 $
Index $ 2^{2} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times D_{14}$
Order: \(112\)\(\medspace = 2^{4} \cdot 7 \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $ab^{3}, d, e, c^{42}, c^{12}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{28}:(C_6\times S_4)$
Order: \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_6\times S_3$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{14}\times A_4).C_6.C_2^4$
$\operatorname{Aut}(H)$ $F_7\times C_2^3:\GL(3,2)$, of order \(56448\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7^{2} \)
$\operatorname{res}(S)$$D_6\times F_7$, of order \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$D_6\times F_7$, of order \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_{28}:(C_6\times S_4)$
Complements:$C_6\times S_3$ $C_6\times S_3$
Minimal over-subgroups:$C_2^3\times F_7$$A_4\times D_{14}$$D_{14}:A_4$$C_2^2\times D_{28}$$D_4\times D_{14}$$D_{14}:D_4$
Maximal under-subgroups:$C_2^2\times C_{14}$$C_2\times D_{14}$$C_2\times D_{14}$$C_2\times D_{14}$$C_2\times D_{14}$$C_2^4$
Autjugate subgroups:4032.fk.36.a1.b1

Other information

Möbius function$6$
Projective image$C_2\times S_4\times F_7$