Subgroup ($H$) information
| Description: | $C_2\times C_{28}:C_6$ | 
| Order: | \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) | 
| Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) | 
| Generators: | 
		
    $a, c^{12}, e, b^{2}, c^{42}, d$
    
    
    
         | 
| Derived length: | $2$ | 
The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Ambient group ($G$) information
| Description: | $C_{28}:(C_6\times S_4)$ | 
| Order: | \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \) | 
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_{14}\times A_4).C_6.C_2^4$ | 
| $\operatorname{Aut}(H)$ | $C_2\wr C_2^2\times F_7$, of order \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \) | 
| $\operatorname{res}(S)$ | $C_2^3\times F_7$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) | 
| $W$ | $C_2^3\times F_7$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) | 
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $3$ | 
| Möbius function | $-2$ | 
| Projective image | $C_2\times S_4\times F_7$ |