Properties

Label 4032.fk.12.z1.a1
Order $ 2^{4} \cdot 3 \cdot 7 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{28}:C_6$
Order: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $a, c^{12}, e, b^{2}, c^{42}, d$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_{28}:(C_6\times S_4)$
Order: \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{14}\times A_4).C_6.C_2^4$
$\operatorname{Aut}(H)$ $C_2\wr C_2^2\times F_7$, of order \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_2^3\times F_7$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_2^3\times F_7$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_{28}:(C_6\times D_4)$
Normal closure:$C_7:C_6\times S_4$
Core:$C_2\times C_{14}:C_6$
Minimal over-subgroups:$C_7:C_6\times S_4$$C_2\times D_4\times F_7$$(D_4\times C_{14}):C_6$$(D_4\times C_{14}):C_6$
Maximal under-subgroups:$C_2\times C_{14}:C_6$$C_2\times C_{14}:C_6$$C_{14}:C_{12}$$C_{28}:C_6$$C_{28}:C_6$$D_4\times C_{14}$$C_6\times D_4$
Autjugate subgroups:4032.fk.12.z1.b1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-2$
Projective image$C_2\times S_4\times F_7$