Properties

Label 4032.fk.36.u1.a1
Order $ 2^{4} \cdot 7 $
Index $ 2^{2} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4\times C_{14}$
Order: \(112\)\(\medspace = 2^{4} \cdot 7 \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $a, e, c^{12}, c^{42}, d$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_{28}:(C_6\times S_4)$
Order: \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{14}\times A_4).C_6.C_2^4$
$\operatorname{Aut}(H)$ $C_2\wr C_2^2\times C_6$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\operatorname{res}(S)$$C_2^3\times C_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(56\)\(\medspace = 2^{3} \cdot 7 \)
$W$$C_2^3\times C_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_{14}$
Normalizer:$C_{28}:(C_6\times D_4)$
Normal closure:$C_{14}\times S_4$
Core:$C_2^2\times C_{14}$
Minimal over-subgroups:$C_{14}\times S_4$$C_2\times C_{28}:C_6$$D_4\times D_{14}$$D_{14}:D_4$$C_{28}:D_4$
Maximal under-subgroups:$C_2^2\times C_{14}$$C_2^2\times C_{14}$$C_2\times C_{28}$$C_7\times D_4$$C_7\times D_4$$C_2\times D_4$
Autjugate subgroups:4032.fk.36.u1.b1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$2$
Projective image$C_2\times S_4\times F_7$