Subgroup ($H$) information
| Description: | $D_4\times C_{14}$ |
| Order: | \(112\)\(\medspace = 2^{4} \cdot 7 \) |
| Index: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
| Generators: |
$a, e, c^{12}, c^{42}, d$
|
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Ambient group ($G$) information
| Description: | $C_{28}:(C_6\times S_4)$ |
| Order: | \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \) |
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_{14}\times A_4).C_6.C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_2\wr C_2^2\times C_6$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
| $\operatorname{res}(S)$ | $C_2^3\times C_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
| $W$ | $C_2^3\times C_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $3$ |
| Möbius function | $2$ |
| Projective image | $C_2\times S_4\times F_7$ |