Subgroup ($H$) information
| Description: | $C_6\times D_8$ |
| Order: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| Index: | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Generators: |
$\left(\begin{array}{rrrr}
2 & 5 & 6 & 5 \\
3 & 6 & 5 & 6 \\
1 & 3 & 1 & 2 \\
1 & 1 & 4 & 5
\end{array}\right), \left(\begin{array}{rrrr}
4 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 4
\end{array}\right), \left(\begin{array}{rrrr}
3 & 0 & 3 & 0 \\
1 & 4 & 0 & 4 \\
6 & 0 & 4 & 0 \\
0 & 1 & 1 & 3
\end{array}\right), \left(\begin{array}{rrrr}
6 & 0 & 0 & 0 \\
0 & 6 & 0 & 0 \\
0 & 0 & 6 & 0 \\
0 & 0 & 0 & 6
\end{array}\right), \left(\begin{array}{rrrr}
2 & 0 & 3 & 6 \\
0 & 2 & 6 & 3 \\
6 & 2 & 5 & 0 \\
2 & 6 & 0 & 5
\end{array}\right), \left(\begin{array}{rrrr}
2 & 4 & 6 & 4 \\
1 & 1 & 3 & 6 \\
6 & 1 & 6 & 3 \\
0 & 6 & 6 & 5
\end{array}\right)$
|
| Nilpotency class: | $3$ |
| Derived length: | $2$ |
The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Ambient group ($G$) information
| Description: | $C_3\times \SL(2,7):C_2^2$ |
| Order: | \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \) |
| Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| Derived length: | $1$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times S_4\times \PGL(2,7)$, of order \(16128\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 7 \) |
| $\operatorname{Aut}(H)$ | $C_2^3.D_4^2$, of order \(512\)\(\medspace = 2^{9} \) |
| $\operatorname{res}(S)$ | $D_8:C_2^3$, of order \(128\)\(\medspace = 2^{7} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
| $W$ | $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $63$ |
| Number of conjugacy classes in this autjugacy class | $3$ |
| Möbius function | not computed |
| Projective image | $C_2^2\times \GL(3,2)$ |