Properties

Label 4032.ch.42.d1
Order $ 2^{5} \cdot 3 $
Index $ 2 \cdot 3 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times D_8$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\left(\begin{array}{rrrr} 2 & 5 & 6 & 5 \\ 3 & 6 & 5 & 6 \\ 1 & 3 & 1 & 2 \\ 1 & 1 & 4 & 5 \end{array}\right), \left(\begin{array}{rrrr} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{array}\right), \left(\begin{array}{rrrr} 3 & 0 & 3 & 0 \\ 1 & 4 & 0 & 4 \\ 6 & 0 & 4 & 0 \\ 0 & 1 & 1 & 3 \end{array}\right), \left(\begin{array}{rrrr} 6 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 6 \end{array}\right), \left(\begin{array}{rrrr} 2 & 0 & 3 & 6 \\ 0 & 2 & 6 & 3 \\ 6 & 2 & 5 & 0 \\ 2 & 6 & 0 & 5 \end{array}\right), \left(\begin{array}{rrrr} 2 & 4 & 6 & 4 \\ 1 & 1 & 3 & 6 \\ 6 & 1 & 6 & 3 \\ 0 & 6 & 6 & 5 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_3\times \SL(2,7):C_2^2$
Order: \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times S_4\times \PGL(2,7)$, of order \(16128\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_2^3.D_4^2$, of order \(512\)\(\medspace = 2^{9} \)
$\operatorname{res}(S)$$D_8:C_2^3$, of order \(128\)\(\medspace = 2^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$C_{12}.C_2^4$
Normal closure:$C_3\times \SL(2,7):C_2^2$
Core:$C_{12}$
Minimal over-subgroups:$C_{12}.C_2^4$
Maximal under-subgroups:$C_2\times C_{24}$$C_3\times D_8$$C_3\times D_8$$C_6\times D_4$$C_2\times D_8$

Other information

Number of subgroups in this autjugacy class$63$
Number of conjugacy classes in this autjugacy class$3$
Möbius function not computed
Projective image$C_2^2\times \GL(3,2)$