Group information
Description: | $C_3\times \SL(2,7):C_2^2$ | |
Order: | \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \) |
|
Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
|
Automorphism group: | $C_2\times S_4\times \PGL(2,7)$, of order \(16128\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 7 \) |
|
Composition factors: | $C_2$ x 3, $C_3$, $\PSL(2,7)$ |
|
Derived length: | $1$ |
|
This group is nonabelian and nonsolvable.
Group statistics
Order | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 12 | 14 | 21 | 24 | 28 | 42 | 84 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Elements | 1 | 127 | 170 | 48 | 422 | 48 | 336 | 1104 | 48 | 96 | 672 | 288 | 96 | 576 | 4032 |
Conjugacy classes | 1 | 4 | 5 | 4 | 11 | 2 | 5 | 17 | 2 | 4 | 10 | 6 | 4 | 12 | 87 |
Divisions | 1 | 4 | 3 | 4 | 6 | 1 | 4 | 10 | 1 | 1 | 4 | 3 | 1 | 3 | 46 |
Autjugacy classes | 1 | 2 | 3 | 2 | 4 | 1 | 3 | 4 | 1 | 1 | 3 | 1 | 1 | 1 | 28 |
Dimension | 1 | 2 | 3 | 6 | 7 | 8 | 12 | 14 | 16 | 24 | 32 | 48 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Irr. complex chars. | 12 | 0 | 24 | 12 | 12 | 18 | 6 | 0 | 3 | 0 | 0 | 0 | 87 |
Irr. rational chars. | 4 | 4 | 0 | 8 | 4 | 4 | 8 | 4 | 6 | 1 | 2 | 1 | 46 |
Minimal presentations
Permutation degree: | $67$ |
Transitive degree: | $192$ |
Rank: | $2$ |
Inequivalent generating pairs: | not computed |
Minimal degrees of faithful linear representations
Over $\mathbb{C}$ | Over $\mathbb{R}$ | Over $\mathbb{Q}$ | |
---|---|---|---|
Irreducible | 8 | 16 | 32 |
Arbitrary | not computed | not computed | not computed |
Constructions
Permutation group: | Degree $67$
$\langle(1,2,7,20,6,11,24,8)(3,12,31,43,15,34,52,21)(4,9,22,39,17,28,45,25)(5,10,23,40,19,30,47,26) \!\cdots\! \rangle$
| |||||||||
| ||||||||||
Matrix group: | $\left\langle \left(\begin{array}{rrrr} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 5 & 6 & 0 \\ 5 & 0 & 0 & 6 \end{array}\right), \left(\begin{array}{rrrr} 3 & 0 & 3 & 0 \\ 1 & 4 & 0 & 4 \\ 6 & 0 & 4 & 0 \\ 0 & 1 & 1 & 3 \end{array}\right), \left(\begin{array}{rrrr} 6 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 6 \end{array}\right), \left(\begin{array}{rrrr} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{array}\right), \left(\begin{array}{rrrr} 6 & 3 & 3 & 1 \\ 3 & 6 & 1 & 3 \\ 0 & 6 & 5 & 4 \\ 6 & 0 & 4 & 5 \end{array}\right), \left(\begin{array}{rrrr} 3 & 2 & 3 & 0 \\ 3 & 4 & 0 & 4 \\ 6 & 0 & 4 & 2 \\ 0 & 1 & 3 & 3 \end{array}\right) \right\rangle \subseteq \GL_{4}(\F_{7})$ | |||||||||
| ||||||||||
Direct product: | $C_3$ $\, \times\, $ $(\SL(2,7):C_2^2)$ | |||||||||
Semidirect product: | $(\SL(2,7):C_6)$ $\,\rtimes\,$ $C_2$ | $(\SL(2,7):C_2)$ $\,\rtimes\,$ $C_6$ | $\SL(2,7)$ $\,\rtimes\,$ $(C_2\times C_6)$ | $(C_3\times \SL(2,7))$ $\,\rtimes\,$ $C_2^2$ | more information | |||||
Trans. wreath product: | not isomorphic to a non-trivial transitive wreath product | |||||||||
Non-split product: | $Q_8$ . $(C_3\times \GL(3,2))$ | $C_4$ . $(C_6\times \GL(3,2))$ | $(C_3\times Q_8)$ . $\PSL(2,7)$ | $C_{12}$ . $(C_2\times \GL(3,2))$ | all 6 |
Elements of the group are displayed as matrices in $\GL_{4}(\F_{7})$.
Homology
Abelianization: | $C_{2} \times C_{6} \simeq C_{2}^{2} \times C_{3}$ |
|
Schur multiplier: | $C_{2}$ |
|
Commutator length: | $1$ |
|
Subgroups
There are 6400 subgroups in 338 conjugacy classes, 22 normal (10 characteristic).
Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.
Special subgroups
Center: | $Z \simeq$ $C_6$ | $G/Z \simeq$ $C_2^2\times \GL(3,2)$ |
|
Commutator: | $G' \simeq$ $\SL(2,7)$ | $G/G' \simeq$ $C_2\times C_6$ |
|
Frattini: | $\Phi \simeq$ $C_2$ | $G/\Phi \simeq$ $C_2\times C_6\times \GL(3,2)$ |
|
Fitting: | $\operatorname{Fit} \simeq$ $C_3\times Q_8$ | $G/\operatorname{Fit} \simeq$ $\PSL(2,7)$ |
|
Radical: | $R \simeq$ $C_3\times Q_8$ | $G/R \simeq$ $\PSL(2,7)$ |
|
Socle: | $\operatorname{soc} \simeq$ $C_6$ | $G/\operatorname{soc} \simeq$ $C_2^2\times \GL(3,2)$ |
|
2-Sylow subgroup: | $P_{ 2 } \simeq$ $D_8:C_2^2$ | ||
3-Sylow subgroup: | $P_{ 3 } \simeq$ $C_3^2$ | ||
7-Sylow subgroup: | $P_{ 7 } \simeq$ $C_7$ |
Subgroup diagram and profile
For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
To see subgroups sorted vertically by order instead, check this box.
Subgroup information
Click on a subgroup in the diagram to see information about it.
|
Series
Derived series | $C_3\times \SL(2,7):C_2^2$ | $\rhd$ | $\SL(2,7)$ |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Chief series | $C_3\times \SL(2,7):C_2^2$ | $\rhd$ | $C_3\times Q_8$ | $\rhd$ | $C_{12}$ | $\rhd$ | $C_6$ | $\rhd$ | $C_2$ | $\rhd$ | $C_1$ |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lower central series | $C_3\times \SL(2,7):C_2^2$ | $\rhd$ | $\SL(2,7)$ |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Upper central series | $C_1$ | $\lhd$ | $C_6$ | $\lhd$ | $C_3\times Q_8$ |
|
Supergroups
This group is a maximal subgroup of 3 larger groups in the database.
This group is a maximal quotient of 1 larger groups in the database.
Character theory
Complex character table
See the $87 \times 87$ character table. Alternatively, you may search for characters of this group with desired properties.
Rational character table
See the $46 \times 46$ rational character table.