Properties

Label 400000000.eam.390625.a1.a1
Order $ 2^{10} $
Index $ 5^{8} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^6.\SD_{16}$
Order: \(1024\)\(\medspace = 2^{10} \)
Index: \(390625\)\(\medspace = 5^{8} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $\langle(1,31,21,11)(2,32,24,13,5,35,23,14)(3,33,22,15,4,34,25,12)(6,38,26,16)(7,37,29,19,10,39,28,18) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $7$
Derived length: $3$

The subgroup is maximal, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_5^7.(C_2^2\times F_5).C_2\wr C_4$
Order: \(400000000\)\(\medspace = 2^{10} \cdot 5^{8} \)
Exponent: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(3200000000\)\(\medspace = 2^{13} \cdot 5^{8} \)
$\operatorname{Aut}(H)$ $C_2^5:C_4.D_4^2$, of order \(8192\)\(\medspace = 2^{13} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure:$C_5^7.(C_2^2\times F_5).C_2\wr C_4$
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$390625$
Möbius function not computed
Projective image not computed