Properties

Label 8192.bbs
Order \( 2^{13} \)
Exponent \( 2^{3} \)
Nilpotent yes
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{5} \)
$\card{Z(G)}$ 4
$\card{\Aut(G)}$ \( 2^{20} \)
$\card{\mathrm{Out}(G)}$ \( 2^{9} \)
Perm deg. not computed
Trans deg. not computed
Rank $5$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 68 | (1,4,18,37)(2,10,34,17)(3,14,42,56)(5,19,48,51)(6,12,35,55)(7,11,36,61)(8,26,38,32)(9,30,47,45)(13,25,52,41)(15,44,60,49)(16,27,46,62)(20,24,40,53)(21,23,50,43)(22,31,57,64)(28,39,63,58)(29,33,59,54)(65,68), (1,3)(2,9)(5,8)(6,24)(7,28)(10,33)(13,29)(15,21)(16,22)(17,41)(18,38)(20,49)(25,30)(32,56)(35,60)(36,46)(37,51)(42,48)(43,55)(45,54)(50,53)(57,63)(58,62)(61,64)(65,67)(66,68), (1,2,8,29)(3,13,5,9)(4,17,14,41)(6,23,15,44)(7,27,16,31)(10,32,25,51)(11,22,39,28)(12,24,40,21)(18,47,38,52)(19,45,26,54)(20,50,55,53)(30,56,33,37)(34,42,59,48)(35,43,60,49)(36,62,46,64)(57,58,63,61)(65,66)(67,68), (1,6,25,22)(2,11,37,40)(3,15,30,28)(4,20,47,64)(5,21,33,7)(8,24,10,16)(9,31,51,44)(12,13,39,32)(14,43,52,58)(17,46,42,60)(18,35,54,36)(19,49,34,61)(23,29,27,56)(26,55,59,62)(38,53,45,63)(41,57,48,50), (1,5)(2,9)(3,8)(4,19)(6,21)(7,22)(10,30)(11,31)(12,23)(13,29)(14,26)(15,24)(16,28)(17,45)(18,48)(20,49)(25,33)(27,39)(32,56)(34,47)(35,50)(36,57)(37,51)(38,42)(40,44)(41,54)(43,55)(46,63)(52,59)(53,60)(58,62)(61,64)(65,68)(66,67), (1,7,13,40,18,36,52,20)(2,12,38,63,34,55,8,28)(3,16,9,23,42,46,47,43)(4,11,25,53,37,61,41,24)(5,22,29,44,48,57,59,49)(6,26,39,10,35,32,58,17)(14,27,30,50,56,62,45,21)(15,19,31,33,60,51,64,54)(65,68)(66,67) >;
 
Copy content gap:G := Group( (1,4,18,37)(2,10,34,17)(3,14,42,56)(5,19,48,51)(6,12,35,55)(7,11,36,61)(8,26,38,32)(9,30,47,45)(13,25,52,41)(15,44,60,49)(16,27,46,62)(20,24,40,53)(21,23,50,43)(22,31,57,64)(28,39,63,58)(29,33,59,54)(65,68), (1,3)(2,9)(5,8)(6,24)(7,28)(10,33)(13,29)(15,21)(16,22)(17,41)(18,38)(20,49)(25,30)(32,56)(35,60)(36,46)(37,51)(42,48)(43,55)(45,54)(50,53)(57,63)(58,62)(61,64)(65,67)(66,68), (1,2,8,29)(3,13,5,9)(4,17,14,41)(6,23,15,44)(7,27,16,31)(10,32,25,51)(11,22,39,28)(12,24,40,21)(18,47,38,52)(19,45,26,54)(20,50,55,53)(30,56,33,37)(34,42,59,48)(35,43,60,49)(36,62,46,64)(57,58,63,61)(65,66)(67,68), (1,6,25,22)(2,11,37,40)(3,15,30,28)(4,20,47,64)(5,21,33,7)(8,24,10,16)(9,31,51,44)(12,13,39,32)(14,43,52,58)(17,46,42,60)(18,35,54,36)(19,49,34,61)(23,29,27,56)(26,55,59,62)(38,53,45,63)(41,57,48,50), (1,5)(2,9)(3,8)(4,19)(6,21)(7,22)(10,30)(11,31)(12,23)(13,29)(14,26)(15,24)(16,28)(17,45)(18,48)(20,49)(25,33)(27,39)(32,56)(34,47)(35,50)(36,57)(37,51)(38,42)(40,44)(41,54)(43,55)(46,63)(52,59)(53,60)(58,62)(61,64)(65,68)(66,67), (1,7,13,40,18,36,52,20)(2,12,38,63,34,55,8,28)(3,16,9,23,42,46,47,43)(4,11,25,53,37,61,41,24)(5,22,29,44,48,57,59,49)(6,26,39,10,35,32,58,17)(14,27,30,50,56,62,45,21)(15,19,31,33,60,51,64,54)(65,68)(66,67) );
 
Copy content sage:G = PermutationGroup(['(1,4,18,37)(2,10,34,17)(3,14,42,56)(5,19,48,51)(6,12,35,55)(7,11,36,61)(8,26,38,32)(9,30,47,45)(13,25,52,41)(15,44,60,49)(16,27,46,62)(20,24,40,53)(21,23,50,43)(22,31,57,64)(28,39,63,58)(29,33,59,54)(65,68)', '(1,3)(2,9)(5,8)(6,24)(7,28)(10,33)(13,29)(15,21)(16,22)(17,41)(18,38)(20,49)(25,30)(32,56)(35,60)(36,46)(37,51)(42,48)(43,55)(45,54)(50,53)(57,63)(58,62)(61,64)(65,67)(66,68)', '(1,2,8,29)(3,13,5,9)(4,17,14,41)(6,23,15,44)(7,27,16,31)(10,32,25,51)(11,22,39,28)(12,24,40,21)(18,47,38,52)(19,45,26,54)(20,50,55,53)(30,56,33,37)(34,42,59,48)(35,43,60,49)(36,62,46,64)(57,58,63,61)(65,66)(67,68)', '(1,6,25,22)(2,11,37,40)(3,15,30,28)(4,20,47,64)(5,21,33,7)(8,24,10,16)(9,31,51,44)(12,13,39,32)(14,43,52,58)(17,46,42,60)(18,35,54,36)(19,49,34,61)(23,29,27,56)(26,55,59,62)(38,53,45,63)(41,57,48,50)', '(1,5)(2,9)(3,8)(4,19)(6,21)(7,22)(10,30)(11,31)(12,23)(13,29)(14,26)(15,24)(16,28)(17,45)(18,48)(20,49)(25,33)(27,39)(32,56)(34,47)(35,50)(36,57)(37,51)(38,42)(40,44)(41,54)(43,55)(46,63)(52,59)(53,60)(58,62)(61,64)(65,68)(66,67)', '(1,7,13,40,18,36,52,20)(2,12,38,63,34,55,8,28)(3,16,9,23,42,46,47,43)(4,11,25,53,37,61,41,24)(5,22,29,44,48,57,59,49)(6,26,39,10,35,32,58,17)(14,27,30,50,56,62,45,21)(15,19,31,33,60,51,64,54)(65,68)(66,67)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(487338237677169527971818094877616586756064617859409980370336710330181097595179402527631761548721058157451717141764518540423255551802007412953263450415058461342797996172534145577069658501295,8192)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.11; h = G.12; i = G.13;
 

Group information

Description:$C_2^5:C_4.D_4^2$
Order: \(8192\)\(\medspace = 2^{13} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(8\)\(\medspace = 2^{3} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(1048576\)\(\medspace = 2^{20} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 13
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Nilpotency class:$6$
Copy content comment:Nilpotency class of the group
 
Copy content magma:NilpotencyClass(G);
 
Copy content gap:NilpotencyClassOfGroup(G);
 
Copy content sage_gap:G.NilpotencyClassOfGroup()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary).

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 4 8
Elements 1 575 5056 2560 8192
Conjugacy classes   1 31 73 14 119
Divisions 1 31 69 12 113
Autjugacy classes 1 26 62 10 99

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 4 8 16 32
Irr. complex chars.   32 32 26 15 10 4 119
Irr. rational chars. 32 32 14 21 10 4 113

Minimal presentations

Permutation degree:not computed
Transitive degree:not computed
Rank: $5$
Inequivalent generating 5-tuples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible none none none
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i \mid c^{4}=d^{4}=e^{4}=f^{2}=g^{2}=h^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([13, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 9984, 161149, 66, 53198, 5644, 41187, 180768, 6997, 146, 67604, 50457, 16930, 168485, 24354, 35599, 17828, 5205, 226, 122310, 61171, 7312, 3685, 66567, 36628, 19182, 2555, 12136, 306, 116502, 24995, 25008, 3194, 91543, 239640, 89893, 59954, 11308, 1254668, 109563, 46032, 27117, 10243]); a,b,c,d,e,f,g,h,i := Explode([G.1, G.2, G.4, G.6, G.8, G.10, G.11, G.12, G.13]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "g", "h", "i"]);
 
Copy content gap:G := PcGroupCode(487338237677169527971818094877616586756064617859409980370336710330181097595179402527631761548721058157451717141764518540423255551802007412953263450415058461342797996172534145577069658501295,8192); a := G.1; b := G.2; c := G.4; d := G.6; e := G.8; f := G.10; g := G.11; h := G.12; i := G.13;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(487338237677169527971818094877616586756064617859409980370336710330181097595179402527631761548721058157451717141764518540423255551802007412953263450415058461342797996172534145577069658501295,8192)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.11; h = G.12; i = G.13;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(487338237677169527971818094877616586756064617859409980370336710330181097595179402527631761548721058157451717141764518540423255551802007412953263450415058461342797996172534145577069658501295,8192)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.11; h = G.12; i = G.13;
 
Permutation group:Degree $68$ $\langle(1,4,18,37)(2,10,34,17)(3,14,42,56)(5,19,48,51)(6,12,35,55)(7,11,36,61) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 68 | (1,4,18,37)(2,10,34,17)(3,14,42,56)(5,19,48,51)(6,12,35,55)(7,11,36,61)(8,26,38,32)(9,30,47,45)(13,25,52,41)(15,44,60,49)(16,27,46,62)(20,24,40,53)(21,23,50,43)(22,31,57,64)(28,39,63,58)(29,33,59,54)(65,68), (1,3)(2,9)(5,8)(6,24)(7,28)(10,33)(13,29)(15,21)(16,22)(17,41)(18,38)(20,49)(25,30)(32,56)(35,60)(36,46)(37,51)(42,48)(43,55)(45,54)(50,53)(57,63)(58,62)(61,64)(65,67)(66,68), (1,2,8,29)(3,13,5,9)(4,17,14,41)(6,23,15,44)(7,27,16,31)(10,32,25,51)(11,22,39,28)(12,24,40,21)(18,47,38,52)(19,45,26,54)(20,50,55,53)(30,56,33,37)(34,42,59,48)(35,43,60,49)(36,62,46,64)(57,58,63,61)(65,66)(67,68), (1,6,25,22)(2,11,37,40)(3,15,30,28)(4,20,47,64)(5,21,33,7)(8,24,10,16)(9,31,51,44)(12,13,39,32)(14,43,52,58)(17,46,42,60)(18,35,54,36)(19,49,34,61)(23,29,27,56)(26,55,59,62)(38,53,45,63)(41,57,48,50), (1,5)(2,9)(3,8)(4,19)(6,21)(7,22)(10,30)(11,31)(12,23)(13,29)(14,26)(15,24)(16,28)(17,45)(18,48)(20,49)(25,33)(27,39)(32,56)(34,47)(35,50)(36,57)(37,51)(38,42)(40,44)(41,54)(43,55)(46,63)(52,59)(53,60)(58,62)(61,64)(65,68)(66,67), (1,7,13,40,18,36,52,20)(2,12,38,63,34,55,8,28)(3,16,9,23,42,46,47,43)(4,11,25,53,37,61,41,24)(5,22,29,44,48,57,59,49)(6,26,39,10,35,32,58,17)(14,27,30,50,56,62,45,21)(15,19,31,33,60,51,64,54)(65,68)(66,67) >;
 
Copy content gap:G := Group( (1,4,18,37)(2,10,34,17)(3,14,42,56)(5,19,48,51)(6,12,35,55)(7,11,36,61)(8,26,38,32)(9,30,47,45)(13,25,52,41)(15,44,60,49)(16,27,46,62)(20,24,40,53)(21,23,50,43)(22,31,57,64)(28,39,63,58)(29,33,59,54)(65,68), (1,3)(2,9)(5,8)(6,24)(7,28)(10,33)(13,29)(15,21)(16,22)(17,41)(18,38)(20,49)(25,30)(32,56)(35,60)(36,46)(37,51)(42,48)(43,55)(45,54)(50,53)(57,63)(58,62)(61,64)(65,67)(66,68), (1,2,8,29)(3,13,5,9)(4,17,14,41)(6,23,15,44)(7,27,16,31)(10,32,25,51)(11,22,39,28)(12,24,40,21)(18,47,38,52)(19,45,26,54)(20,50,55,53)(30,56,33,37)(34,42,59,48)(35,43,60,49)(36,62,46,64)(57,58,63,61)(65,66)(67,68), (1,6,25,22)(2,11,37,40)(3,15,30,28)(4,20,47,64)(5,21,33,7)(8,24,10,16)(9,31,51,44)(12,13,39,32)(14,43,52,58)(17,46,42,60)(18,35,54,36)(19,49,34,61)(23,29,27,56)(26,55,59,62)(38,53,45,63)(41,57,48,50), (1,5)(2,9)(3,8)(4,19)(6,21)(7,22)(10,30)(11,31)(12,23)(13,29)(14,26)(15,24)(16,28)(17,45)(18,48)(20,49)(25,33)(27,39)(32,56)(34,47)(35,50)(36,57)(37,51)(38,42)(40,44)(41,54)(43,55)(46,63)(52,59)(53,60)(58,62)(61,64)(65,68)(66,67), (1,7,13,40,18,36,52,20)(2,12,38,63,34,55,8,28)(3,16,9,23,42,46,47,43)(4,11,25,53,37,61,41,24)(5,22,29,44,48,57,59,49)(6,26,39,10,35,32,58,17)(14,27,30,50,56,62,45,21)(15,19,31,33,60,51,64,54)(65,68)(66,67) );
 
Copy content sage:G = PermutationGroup(['(1,4,18,37)(2,10,34,17)(3,14,42,56)(5,19,48,51)(6,12,35,55)(7,11,36,61)(8,26,38,32)(9,30,47,45)(13,25,52,41)(15,44,60,49)(16,27,46,62)(20,24,40,53)(21,23,50,43)(22,31,57,64)(28,39,63,58)(29,33,59,54)(65,68)', '(1,3)(2,9)(5,8)(6,24)(7,28)(10,33)(13,29)(15,21)(16,22)(17,41)(18,38)(20,49)(25,30)(32,56)(35,60)(36,46)(37,51)(42,48)(43,55)(45,54)(50,53)(57,63)(58,62)(61,64)(65,67)(66,68)', '(1,2,8,29)(3,13,5,9)(4,17,14,41)(6,23,15,44)(7,27,16,31)(10,32,25,51)(11,22,39,28)(12,24,40,21)(18,47,38,52)(19,45,26,54)(20,50,55,53)(30,56,33,37)(34,42,59,48)(35,43,60,49)(36,62,46,64)(57,58,63,61)(65,66)(67,68)', '(1,6,25,22)(2,11,37,40)(3,15,30,28)(4,20,47,64)(5,21,33,7)(8,24,10,16)(9,31,51,44)(12,13,39,32)(14,43,52,58)(17,46,42,60)(18,35,54,36)(19,49,34,61)(23,29,27,56)(26,55,59,62)(38,53,45,63)(41,57,48,50)', '(1,5)(2,9)(3,8)(4,19)(6,21)(7,22)(10,30)(11,31)(12,23)(13,29)(14,26)(15,24)(16,28)(17,45)(18,48)(20,49)(25,33)(27,39)(32,56)(34,47)(35,50)(36,57)(37,51)(38,42)(40,44)(41,54)(43,55)(46,63)(52,59)(53,60)(58,62)(61,64)(65,68)(66,67)', '(1,7,13,40,18,36,52,20)(2,12,38,63,34,55,8,28)(3,16,9,23,42,46,47,43)(4,11,25,53,37,61,41,24)(5,22,29,44,48,57,59,49)(6,26,39,10,35,32,58,17)(14,27,30,50,56,62,45,21)(15,19,31,33,60,51,64,54)(65,68)(66,67)'])
 
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_2^4.Q_8)$ . $D_4^2$ (4) $(C_2^4:D_4)$ . $D_4^2$ (2) $(C_2^6.C_2^4)$ . $D_4$ (32) $C_2^7$ . $(D_8:C_2^2)$ all 168
Aut. group: $\Aut(C_2^6.\SD_{16})$

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{2}^{5} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{9}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 700 normal subgroups (626 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2^2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_2^6:C_4$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2^6:C_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^5:C_4.D_4^2$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $119 \times 119$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $113 \times 113$ rational character table.