Subgroup ($H$) information
| Description: | $C_2\times C_{10}$ |
| Order: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Index: | \(2000\)\(\medspace = 2^{4} \cdot 5^{3} \) |
| Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Generators: |
$a^{2}bc^{2}d^{7}e^{2}f^{6}, d^{2}e^{2}f^{4}, f^{5}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_5^4:(C_2^2\times \OD_{16})$ |
| Order: | \(40000\)\(\medspace = 2^{6} \cdot 5^{4} \) |
| Exponent: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_5^4.C_2.C_2^5.C_2^5.C_2^2$ |
| $\operatorname{Aut}(H)$ | $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| $W$ | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $400$ |
| Number of conjugacy classes in this autjugacy class | $4$ |
| Möbius function | $0$ |
| Projective image | $C_5^4:(C_2\times \OD_{16})$ |