Properties

Label 40000.ji.2000.f1
Order $ 2^{2} \cdot 5 $
Index $ 2^{4} \cdot 5^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{10}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Index: \(2000\)\(\medspace = 2^{4} \cdot 5^{3} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $a^{2}bc^{2}d^{7}e^{2}f^{6}, d^{2}e^{2}f^{4}, f^{5}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_5^4:(C_2^2\times \OD_{16})$
Order: \(40000\)\(\medspace = 2^{6} \cdot 5^{4} \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4.C_2.C_2^5.C_2^5.C_2^2$
$\operatorname{Aut}(H)$ $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$C_4$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_{10}^2$
Normalizer:$C_{10}^2:C_4$
Normal closure:$C_5^4:(C_2^2\times C_4)$
Core:$C_2$
Minimal over-subgroups:$C_{10}^2$$C_5\times D_{10}$$C_5\times D_{10}$$C_5\times D_{10}$$C_2\times D_{10}$
Maximal under-subgroups:$C_{10}$$C_{10}$$C_2^2$

Other information

Number of subgroups in this autjugacy class$400$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image$C_5^4:(C_2\times \OD_{16})$