Properties

Label 40000.is.4.h1
Order $ 2^{4} \cdot 5^{4} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_5^3\times C_{10}).D_4$
Order: \(10000\)\(\medspace = 2^{4} \cdot 5^{4} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $aef^{4}, d^{2}fg^{4}, f, c^{2}e^{4}f^{3}g^{8}, ef^{2}g^{8}, g^{2}, cd^{5}, g^{5}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $(\SO(3,7)\times S_4^2).C_2^2$
Order: \(40000\)\(\medspace = 2^{6} \cdot 5^{4} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(1280000\)\(\medspace = 2^{11} \cdot 5^{4} \)
$\operatorname{Aut}(H)$ $C_5^4.C_2.C_2^5.S_5$
$W$$C_5:D_5^3:C_2^2$, of order \(20000\)\(\medspace = 2^{5} \cdot 5^{4} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$(\SO(3,7)\times S_4^2).C_2^2$
Minimal over-subgroups:$C_5^2:C_{10}^2.D_4$$C_5^4:(C_4^2:C_2)$
Maximal under-subgroups:$C_2\times C_5^4:C_2^2$$C_5^4:(C_2\times C_4)$$C_2\times C_5^4:C_4$$D_5^2:C_4$$D_5^2:C_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$2$
Projective image$C_5:D_5^3:C_2^2$