Properties

Label 40000.is.2.h1
Order $ 2^{5} \cdot 5^{4} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^4:(C_4^2:C_2)$
Order: \(20000\)\(\medspace = 2^{5} \cdot 5^{4} \)
Index: \(2\)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $g^{2}, f, bd^{7}f^{3}g^{4}, d^{2}fg^{4}, c^{2}d^{6}e^{2}f^{4}, ef^{2}g^{8}, aef^{4}, cd^{5}, g^{5}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $(\SO(3,7)\times S_4^2).C_2^2$
Order: \(40000\)\(\medspace = 2^{6} \cdot 5^{4} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(1280000\)\(\medspace = 2^{11} \cdot 5^{4} \)
$\operatorname{Aut}(H)$ $C_5^4.C_4.C_2^5.C_2^4$
$W$$C_5:D_5^3:C_2^2$, of order \(20000\)\(\medspace = 2^{5} \cdot 5^{4} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$(\SO(3,7)\times S_4^2).C_2^2$
Complements:$C_2$
Minimal over-subgroups:$(\SO(3,7)\times S_4^2).C_2^2$
Maximal under-subgroups:$(C_5^3\times C_{10}).D_4$$(C_5^3\times C_{10}).D_4$$C_5^4:(C_2^2\times C_4)$$(C_5^3\times C_{10}).D_4$$C_5^4.C_4^2$$C_5^4.C_4^2$$(C_5^3\times C_{10}).Q_8$$D_5^2.(C_2\times C_4)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_5:D_5^3:C_2^2$